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Abstract

How can crime be disrupted most effectively without increasing resources? To an-

swer this question, we develop a spatial network model to analyze crime diffusion, using

London as a case study. Moving beyond traditional hot spot policing, we identify key

player neighborhoods—highly connected areas in the network. Our analysis reveals that

while hot spots mainly attract crime locally, key player neighborhoods predominantly

propagate it. Simulations show that targeting the top 10% of key players reduces crime

by 10.7% (5.8 percentage points) more than hot spot strategies. This approach offers

a cost-effective solution, with potential annual savings exceeding £130 million.
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1 Introduction

The persistence of crime poses a significant challenge to societies worldwide. While the UK,

like many developed nations, experienced a decline in crime rates through the early 2000s,

this trend has reversed in recent years, with crime rates once again on the rise. The renewed

surge in crime is not only a matter of public concern but also a significant economic burden,

estimated to impose social costs of approximately £59 billion in 2016.1 At the same time,

fiscal pressures have forced a reduction in police resources, with officer numbers falling from

172,000 in 2011 to 150,000 by 2019. Although recruitment efforts have partially offset these

reductions since 2020, the current ratio of officers to population remains below its 2010

level.2 The challenge of rising crime amidst resource constraints has spurred policymakers

and researchers to seek more effective and efficient crime prevention strategies.

One approach that has gained considerable attention is hot spot policing. Its premise

is that crime tends to concentrate in relatively small geographic zones, or “hot spots”, and

that concentrating additional patrols, targeted enforcement, or community outreach to these

zones can yield more efficient crime reductions (Sherman et al., 1989, Weisburd, 2015, Braga,

2017). Indeed, meta-analyses – mostly focused on the USA – such as Braga et al. (2019)

find that hot-spot policing produces small but meaningful reductions in crime. In contrast

to the documented benefits, researchers have raised concerns that hot spot policing may,

however, displace crime to nearby neighborhoods and strain police-community relations,

particularly in socially vulnerable districts (Rosenbaum, 2006, Briggs and Keimig, 2017).

These displacement concerns highlight a critical insight: criminal activity is not confined to

isolated localities but is influenced by interactions and dependencies among neighboring areas.

Neglecting these broader spatial dynamics can limit the effectiveness of crime prevention

strategies.

In this paper, we develop and empirically assess an enhanced hot spot appraoch that

explicitly incorporates a network perspective to account for spatial spillovers. Building on

the framework of Ballester et al. (2006), our approach shifts the focus from merely targeting

areas with the highest crime counts (i.e., traditional hot spots) to identifying and prioritizing

key player areas. These are areas that, due to their central role in the spatial diffusion of

crime, have an outsized impact on overall criminal activity—even if their local crime might

not be necessarily the highest. By recognizing that criminal activity in one area can prop-

agate into surrounding localities—via channels such as offender mobility and co-offending

1For trends over time in police recorded crime, see https://data.justice.gov.uk/cjs-statistics/
cjs-crime#chart-tab-ons-crime-survey. The figure of social costs refers to 2015–2016 and is taken from
Heeks et al. (2018).

2See https://researchbriefings.files.parliament.uk/documents/SN00634/SN00634.pdf.
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ties—our approach addresses a critical shortcoming of conventional hot spot strategies. Ig-

noring the interconnections and spillovers across areas underestimates the broader impact

that interventions in strategically important locations can have on overall crime reduction.

The central aim of our approach is to demonstrate that integrating a network dimension into

crime prevention can uncover intervention strategies capable of achieving more substantial

reductions in overall crime (and its associated financial burden) compared to a standard focus

on high-crime areas.

To achieve this aim, we develop an empirical framework using neighborhood-level crime

data in London as a case study. Our framework unfolds in four main steps. First, we establish

the extent of spatial correlation in crime. We do so by estimating a spatial autoregressive

panel model with fixed effects using panel data of neighborhood-level crime from 2013 to

2019, considering separately property and violent crime. This step quantifies how crime in

each neighborhood is influenced by that in nearby areas, while controlling for unobserved

heterogeneity and local trends. The estimates of the spatial econometric model serve as

the foundation for our second step, wherein we compute an intercentrality (i.e., key player)

measure for each neighborhood following the methodology of Ballester et al. (2006). This

measure captures not only a neighborhood’s direct crime levels but also its role in sustaining

and propagating crime through connections with other influential areas. A neighborhood

with high intercentrality occupies a strategic position that amplifies crime diffusion across

other neighborhoods. Consequently, removing key player neighborhoods yields the largest

reduction in overall crime in the network, making these areas crucial targets for public inter-

vention. Third, we compare two alternative crime prevention policies: the conventional hot

spot policy, which prioritizes enforcement in the neighborhoods with the highest observed

crime levels, and the key player policy, which targets the most influential neighborhoods

based on their intercentrality. To assess the effectiveness of these policies, we conduct a

simulation exercise. Specifically, we simulate the crime reduction that would occur if law

enforcement were able to completely eliminate crime in the top 500 neighborhoods (10% of

the total) identified under each policy. This exercise allows us to quantify the additional

crime reduction achieved by targeting key players rather than conventional hot spots. By

comparing these scenarios, we provide direct evidence of the potential gains from incorporat-

ing network effects into policing strategies. In the fourth step, we use cost-of-crime estimates

to quantify the financial benefits of crime reduction under the key player policy.

Our findings from the spatial econometric model reveal that property crime exhibits

substantial spatial spillovers: crime in an averagely connected neighborhood is roughly 70

percent higher than in an otherwise comparable but isolated neighborhood. This suggests

that conventional hot spot strategies, which focus solely on crime volume, may systematically
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overlook neighborhoods that, despite not having the highest crime rates, play a crucial role

in diffusing criminal activity. Our simulation exercise confirms this: targeting the top 500

key player neighborhoods could yield an additional 5.8 percentage point reduction in crime

compared to targeting the top 500 hot spots. We show that this difference arises because

only two-thirds of the top hot spots are also key players. Therefore, a traditional hot spot

policy would allocate about one-third of its resources to high-crime areas that have limited

influence on broader crime diffusion, whereas a key player strategy would redirect those

resources to neighborhoods that, despite lower crime levels, play a central role in sustaining

and spreading criminal activity across the network. The resulting crime reduction translates

into estimated annual savings exceeding £130 million, underscoring the broader efficiency

gains from targeting the most influential nodes in the crime network. By contrast, our

results indicate no meaningful spatial spillovers for violent crime. This suggests that, unlike

property crime, interventions targeting either high-crime areas or key players in London yield

similar outcomes in reducing violent crime.

After establishing that the key player approach produces significantly greater crime re-

ductions than conventional hot spot policies, we turn to a crucial question: why are key

player neighborhoods more effective than hot spots? In other words, what makes key players

so critical in diffusing crime across the network? We delve into this question by empirically

examining the sociodemographic and built environment characteristics that differentiate key

player neighborhoods from hot spot neighborhoods. The comparison uncovers systematic

distinctions between the two types of areas. Key player neighborhoods tend to be more de-

prived, have higher population density, and are situated closer to central London. Yet, unlike

hot spot neighborhoods—which are endowed with features such as extensive public transport

hubs, parks, and other amenities that concentrate local crime – key player neighborhoods

lack these features. A key indicator of these differences is that offenders from key player

neighborhoods are more likely to commit crimes outside their residential areas, as reflected

in the lower ratio of crimes within their neighborhoods to those committed by residents.

Building on this, we analyze offender-level data and uncover distinct spatial search pat-

terns. Offenders residing in key player neighborhoods tend to commit crimes at shorter

distances from home and are more likely to co-offend with local partners, reinforcing their

role in spreading criminal activity beyond their immediate area. The combination of these

findings suggests that while hot spot neighborhoods serve as “crime attractors” that concen-

trate criminal activity locally, key player neighborhoods act as “crime dissipators”, enabling

the spread of crime across the network. To complement this evidence, and as final step,

we develop a simple theoretical model to explain why offenders in key player neighborhoods

are more likely to commit crimes outside their area of residence compared to those in hot
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spot areas. The model formalizes the trade-offs faced by offenders and demonstrates how the

strategic network position of key player neighborhoods lowers the external costs of commit-

ting crimes elsewhere, reinforcing their role in crime diffusion.

Our paper contributes to the literature on social networks and the economics of crime

in several ways. First, it enhances the understanding of spatial patterns in property crime

by documenting significant spatial spillovers and demonstrating that accounting for these

spillovers can improve the effectiveness of crime reduction policies (Zenou, 2003, Durlauf and

Nagin, 2011). While prior research has highlighted the concentration of crime (Glaeser et al.,

1996), our findings reveal that these concentrations are influenced by underlying network

structures,3 which has direct implications for the design of targeted interventions.4 Second,

our work provides a novel application of key player theory to crime prevention, extending its

use from contexts such as R&D (König et al., 2019), economic development (Amarasinghe

et al., 2020), and financial networks (Denbee et al., 2021). By identifying key player neigh-

borhoods that influence crime diffusion, we underscore the importance of network centrality

in formulating efficient law enforcement strategies. Finally, we contribute to the hot spot

policing literature by illustrating that a solely crime-based ranking of neighborhoods may

overlook those with significant network impacts, thereby underestimating the potential for

citywide crime reduction. Our study also engages with a policy environment characterized by

sustained resource pressures, providing evidence on cost-effective policing strategies in Lon-

don—one of Europe’s largest urban areas—thereby addressing a gap in the predominantly

US-based literature (Braga et al., 2019, Chalfin, 2025).

The remainder of the paper is structured as follows. Section 2 details the data sources, the

construction of neighborhood-level variables, and key summary statistics. Section 3 presents

the empirical framework, outlining the spatial panel model and identification strategy. Sec-

tion 4 reports the main estimates and assesses their robustness. Section 5 derives the key

player based on the estimates of the spatial econometric model and quantifies, through sim-

ulations, the impact on crime and its financial implications of both the key player and the

hot spot policy. Section 6 investigates the underlying mechanisms. Section 7 concludes.

3For overviews of the crime and network literature, see Carrington (2011), Faust and Tita (2019), and
Lindquist and Zenou (2019).

4While Bhuller et al. (2018), Lee et al. (2021), and Lindquist et al. (2024) also examine the role of network
structure in crime, their approaches differ significantly. Bhuller et al. (2018) focus on incarceration spillovers
within criminal and brother networks, Lee et al. (2021) explore the methodological aspects of the key player
policy, and Lindquist et al. (2024) investigate how the exogenous deaths of criminals influence the criminal
activities of their co-offenders.
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2 Data

We use data on crime and other characteristics at the neighborhood level for London for the

period 2013 to 2019.5 London accounts for about one quarter of all crimes in England and

Wales, with average neighborhood crime rates (87 per 1,000 residents) being substantially

higher than outside the city (65 per 1,000 residents). Moreover, some areas in London

have the highest crime incidence in the country (with peaks of 689 per 1,000 residents).

This considerable variance in crime incidence highlights the need for nuanced approaches

to crime prevention, particularly for high-crime areas that drive much of the overall rates.

Studying London also offers a unique advantage for policy simulation, as the Metropolitan

Police Service oversees crime prevention and resource allocation for the entire Greater London

Area, enabling a unified approach to social planning and resource distribution. Furthermore,

London’s diverse socioeconomic landscape and high population density make it an ideal

setting to study the spatial dynamics of crime.

Crime data are obtained from the Single Online Home National Digital Team and the

British Transport Police, which gather information from police forces and publish them at the

street-by-month level for each crime type. We aggregate the raw data to obtain yearly counts

of crime at the Lower Layer Super Output Areas (LSOA) level. LSOAs are geographic areas

widely used to report neighborhood-level statistics.6 There are 4,835 LSOAs in London, with

an average population of about 1,800 during the period of our analysis. We focus separately

on property and violent crimes, which together account for more than 95% of all crimes

observed during the period of interest. However, we also show separately key results for drug

crimes (the third largest category) and total crime (the aggregate of property, violent, drug,

and other crime). We use crime levels as the preferred outcome because, when targeting

particular areas for crime prevention purposes, police authorities are interested in absolute

measures. At the same time, crime rates are an important statistic widely used to describe

crime incidence, and for this reason, we present robustness analyses also using these. It

is important to note that our crime data reflects reported crimes. Therefore, our analysis

is subject to the limitations of official crime statistics, such as potential underreporting of

certain types of offenses.

In our analysis, we also use data on additional neighborhood characteristics. Firstly,

we include the yearly LSOA population using data from the ONS population estimates.

This allows to account for variations in neighborhood size, ensuring that observed crime

5Our analysis spans 2013-2019, the period for which we have the earliest consistent data series for all
variables. We limit the analysis to the pre-COVID-19 period to avoid the confounding influence of pandemic-
related disruptions on crime patterns.

6LSOAs are built up of output areas (OA), which are the smallest statistical unit for Census data in
England and Wales. For a map of neighborhoods, see Figure A1 in the Appendix.
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patterns are not driven solely by population differences. We then construct a proxy for

LSOA unemployment using the number of people claiming unemployment-related benefits,

obtained from the DWP Alternative Claimant Count statistics. Unemployment is included

as a key control variable because it can influence crime through mechanisms such as financial

hardship and weakened social cohesion. Finally, we include a variable capturing the “local

bite” of the National Living Wage (NLW) for young adults. This is constructed using the

average of three age-specific NLW rates (16-17 years old, 18-20 years old, 21-24 years old),

weighted by the share of the corresponding population age groups over the total population

and by the share of individuals aged 16-24 among the population of low-qualified individuals

in each LSOA.7 This variable is included to capture the local economic conditions relevant to

young adults, who may be particularly vulnerable to economic factors influencing criminal

activity.

Our balanced panel dataset consists of 33,845 neighborhood-year observations. Table 1

presents key summary statistics; for each characteristic, we report the mean value and the

overall, between (i.e., across neighborhoods), and within (i.e., the variation over time within

each neighborhood) standard deviations. The table reveals substantial variation in crime

levels across neighborhoods, as well as significant within-neighborhood variation over time.

Property crimes account for about 60% of all crimes, with violent crimes representing just

less than one-third of the total. Less than 5% of the total pertains to crimes related to drugs.

Figure 1 provides a first impression of the spatial pattern of crime in London. The maps

represent the 500 neighborhoods with the highest levels of property and violent crime in the

year 2016. These 500 hot spots make up just 10% of all neighborhoods but alone account

for 40% of the property crime and 30% of the violent crime in London. The co-occurrence

of two features is striking. First, the bulk of crime crime concentrates in a small fraction of

areas, a pattern that naturally lends itself to targeted interventions such as hot spot polic-

ing. Second, these high-crime areas exhibit marked spatial clustering, particularly in central

London, a pattern that both underscores the potential for spatial spillovers and provides a

7Formally, this variable is calculated as NLWt =
∑

j nlwj,t× popj,t

pop × pop
l
16-24 j ∈ {16-17, 18-19, 21-24},

where pop is the share of individuals aged 16-24 among the population of low-qualified individuals. This “local
bite” of the NLW for young adults is constructed as a weighted average of three age-specific NLW rates. The
weights are determined by: (i) the share of the corresponding population age groups over the total population,
and (ii) the share of individuals aged 16-24 among the population of low-qualified individuals in each LSOA.
This weighting scheme aims to reflect local aspects of economic well-being of younger residents, whose financial
stability may be linked to their likelihood of engaging in criminal activities. The age-specific population shares
in each year are derived using the ONS population estimates. The share of low-qualified youth population
is constructed as the fraction of individuals aged 16-24 reporting either “No qualifications” or “Level 1
qualifications” as highest qualification over all individuals aged above 16 reporting “No qualifications” or
“Level 1 qualifications”. Qualification data at the neighborhood level are only available from the 2011
Census and thus we use this source to construct them. This assumes that these shares are relatively stable
over the period of our analysis.
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Table 1: Summary Statistics

Mean
Standard Deviation

Total Between Within

N. Crimes – All 160.33 252.98 245.13 62.65
N. Crimes – Property 100.92 188.42 181.58 50.35
N. Crimes – Violent 51.42 61.61 58.62 18.98
N. Crimes – Drugs 7.99 15.68 14.01 7.05
Population Size 1804.95 396.29 377.98 119.17
N. Unemployed 47.66 30.68 28.28 11.90
National Living Wage 581.80 44.67 22.66 38.49

Notes. N=33,845; n=4,835; t=7. All observations are at the LSOA level. Means are calculated over the
period 2013-2019. N. Crimes is the number of crimes related to each category occurring in a neighborhood.
Definitions of the other variables and the data sources, including those for crime, are provided in section 2.

compelling rationale for considering spatially-informed policing strategies. Furthermore, a

visual comparison of the property and violent crime maps suggests that property crime hot

spots exhibit a more pronounced spatial concentration than violent crime hot spots, hint-

ing at potentially different underlying spatial dynamics. We will use these 500 areas in our

simulations, where we will compare the hot spot policy with the key players approach.

Figure 1: Crime Hot Spots

Property Crime Violent Crime

Notes. The map highlights in blue the top 500 neighborhoods classified as hot spots for property crime
(left panel) and violent crime (right panel). Hot spots are identified based on the average annual crime
level for each neighborhood over 2013-2019. LSOA boundaries are from the 2011 Census shapefiles (https:
//geoportal.statistics.gov.uk). Crime data sources are detailed in section 2.
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3 Empirical Framework

The empirical strategy is structured in three steps. First, we estimate an econometric model

that captures the spatial dependencies of crime, highlighting how crime in one neighborhood

is influenced by crime in neighboring areas within the same network. To effectively embed the

network approach, we utilize a spatial econometric model, which is essential for accurately

estimating the interdependencies inherent in crime dynamics. This approach allows us to

explore the geographic links between neighborhoods and understand how local interactions

can shape crime patterns. The network is defined geographically; a “link” exists between two

areas if they are within a certain radius (see subsection 3.3 for details). Second, we identify

the “key players” in crime–neighborhoods whose removal would lead to the greatest overall

crime reduction in the network. This step uses the insights gained from the spatial model

to determine which neighborhoods are most critical in influencing crime dynamics across the

network. Third, we simulate policy interventions, comparing scenarios where police focus

resources on these key neighborhoods versus the conventional ”hot spot policing” strategy.

In this phase, we quantify the financial implications of adopting the key player approach,

providing practical insights into resource allocation strategies for law enforcement. In this

section, we illustrate the spatial econometric model, while the key player analysis is presented

in Section 5.

3.1 Spatial Econometric Model

Our empirical model is a spatial autoregressive Durbin model (SDM), defined as follows:

yit = ρGyit +X ′itβ + GXitγ + ηiτ + εit, (1)

where yit represents the vector of crime outcomes in neighborhood i at time t, and G is the

spatial weights matrix capturing the connections between neighborhoods. Specifically, Gyit

captures the spatial lag of the dependent variable, reflecting how crime in one neighborhood

is influenced by crime in neighboring areas. In our baseline analysis, G is constructed such

that its entries are 1 for neighborhoods whose centroids lie within an 800-meter radius of

the centroid of neighborhood i, and 0 otherwise. This radius is selected to reflect immediate

spatial interactions. The matrix is not normalized, resulting in a local aggregate model (see

Liu et al., 2014), allowing us to interpret the total influence of neighboring neighborhoods’

crime dynamics on the focal neighborhood’s crime levels. In contrast, a normalized spatial

weights matrix would adjust for the number of connections each area has, measuring the
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average effect of neighboring crime dynamics—i.e., a local average model. 8

The matrix X includes key neighborhood characteristics, such as total population, unem-

ployment, and the National Living Wage for young adults, with β capturing the direct effects

of these characteristics on local crime. The spatial lags of the independent variables, GX,

capture spillover effects, allowing changes in the economic and demographic conditions of

neighboring areas to influence local crime patterns. This inclusion accounts for the impact of

socio-economic factors in surrounding neighborhoods on local crime rates through social in-

teractions across areas. By incorporating these spatial lags, the SDM offers a comprehensive

understanding of how broader neighborhood dynamics shape crime. The model also includes

neighborhood fixed effects (η) and time trends (τ) to control for time-invariant unobserved

heterogeneity and neighborhood-specific linear changes over time, respectively. Neighbor-

hood fixed effects control for time-invariant factors that may differ across neighborhoods but

remain constant over the study period. These fixed effects capture the unique characteristics

of each neighborhood, such as long-standing cultural factors, historical crime rates, or geo-

graphic features, which might influence crime but are not explicitly measured in the model.

By accounting for these unobserved characteristics, the model reduces the risk of omitted

variable bias, ensuring that the estimated effects of the observed characteristics are more

accurate and reliable. Time trends account for linear changes in crime rates or neighborhood

characteristics over time. These trends are essential for capturing any temporal patterns or

shifts in crime that may occur due to broader economic changes, policy interventions, or

social dynamics. By including these, the model can differentiate between changes in crime

rates attributable to the observed characteristics and those arising from general time-related

factors. This allows for a clearer interpretation of how specific neighborhood characteristics

and spatial dynamics impact crime over time. In our estimation, we cluster the standard

errors at the neighborhood level to address potential issues of spatial autocorrelation in the

error terms Drukker (2003).

While the Spatial Durbin Model captures both direct effects of neighborhood characteris-

tics and spillover effects on local crime, we also estimate an alternative Spatial Autoregressive

model (SAR) specification. The SAR focuses on spatially lagged crime outcomes, provid-

ing a more straightforward interpretation of spatial dependence. By comparing results from

both models, we evaluate the robustness of our findings and ensure the reliability of the

relationships between neighborhood characteristics and crime across different econometric

specifications.

8For the uniqueness of equilibrium in the model underpinning the key player analysis, the condition
|φρ| < 1 must hold, where φ is the largest eigenvalue of G. This ensures that spatial crime dynamics do
not become ”explosive” and that neighboring influences remain bounded. In our case, φ = 18.267, so the
condition ρ ≤ 1/18.267 = 0.055 is satisfied in our key estimates.
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3.2 Identification

The model is estimated using the panel data maximum likelihood (ML) approach, primarily

developed by Lee and Yu (2010). Identifying the causal effects of crime dynamics within

a network model needs careful consideration of potential biases, particularly those arising

from the endogeneity of spatial lags and the influence of unobserved local factors that can

induce spurious correlations among neighboring areas. The latter pertain to the influence

of unobserved local factors that may lead to spurious correlations among the crime rates

of neighborhoods within the same network. This potential source of bias adds to the well-

known omitted variables problem that affects OLS estimation. In our settings, where we

exploit the use of panel data, the role played by unobservable factors is mitigated in several

ways. First, the neighborhood fixed effects η allow us to purge the effect of unobservable,

time-invariant local characteristics – such as cultural or geographic factors – that could

confound our estimates. Second, the terms X and GX control for exogenous time-varying

characteristics, with X capturing characteristics specific to the neighborhood itself, and GX

accounting for the characteristics of the neighboring areas within the same network. Finally,

neighborhood-specific time trends τ help to capture time-varying unobservable factors that

are specific to each neighborhood and evolve linearly over time.

The endogeneity of the spatial lag arises because y (crime in a neighborhood) and Gy

(crime in neighboring areas) are determined simultaneously via spatial feedback loops. Ad-

dressing this structural simultaneity is critical for credible causal inference. The maximum

likelihood (ML) approach is particularly well-suited for spatial panel data models because it

directly models the joint determination of y and Gy within the likelihood function, thereby

fully capturing the mutual dependence inherent in spatial networks. This structural modeling

yields consistent and efficient parameter estimates by explicitly incorporating spatial correla-

tion. Lee and Yu (2010) develop a transformation-based quasi-maximum likelihood estimator

that eliminates the fixed effects via a within-group transformation. Their Monte Carlo ex-

periments demonstrate that this transformation approach achieves substantially lower bias

and variance compared to direct ML estimation.

While we rely on ML as our baseline approach, it is important to acknowledge its potential

limitations. ML estimation depends on strong distributional assumptions regarding the error

term and may be sensitive to model misspecification. To address these concerns and rein-

force the credibility of our findings, we also implement an IV approach using the generalized

spatial two-stage least squares (GS2SLS) estimator of Kelejian and Prucha (1998). Although

GS2SLS is more robust to heteroskedasticity and less sensitive to distributional assumptions,

it faces challenges in spatial models. Specifically, because GS2SLS typically employs spa-

tially lagged exogenous variables as instruments, the variation in these lags may be limited –
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particularly in highly connected networks – resulting in weak instruments. Moreover, unlike

ML, which models the interdependence between all neighborhoods in the network, IV meth-

ods typically rely on variation in the spatial lag induced by a specific instrument. Therefore,

IV estimates can diverge depending on the instruments employed, particularly in presence of

significant spatial heterogeneity. In such cases, each instrument may capture a unique aspect

of the network’s dependence structure, resulting in distinct local effects..

The strong consistency of our ML and GS2SLS estimates for both property and violent

crime, as we will show in Section 4, reassures us that our key results are robust to the choice

of estimation technique. Additional robustness analyses – such as tests for functional form,

alternative specifications of the spatial weights matrix, and normality diagnostics – lend

further support to our choice of adopting the ML approach as a baseline.

3.3 Choosing the Weights Matrix

The weights matrix G encapsulates the connections among neighborhoods by capturing the

spatial correlation in crime dynamics – specifically, how crime in one area influences crime

in nearby areas. In our setting, we assume that these connections are primarily driven by

geographic proximity, consistent with empirical evidence where distance serves as a proxy

for spatial interdependence in crime patterns.9 Our approach also aligns with findings by

Kirchmaier et al. (2024), who show that crime is highly localized, with the likelihood of

criminal activity diminishing sharply with distance.

For each neighborhood, we define its network as consisting of all other neighborhoods

whose centroids lie within an 800-meter radius (measured using Euclidean distance). In

other words, for a given neighborhood i, its network comprises every neighborhood j such

that the distance between their centroids does not exceed 800 meters. Figure 2 illustrates

this network structure for a selected neighborhood, highlighting its connections within the

800-meter boundary.

To substantiate our choice of an 800-meter cutoff, we employ an empirical “elbow” ap-

proach. Figure 3 displays the estimated spatial lag parameter, ρ̂ (based on Equation 1),

across a range of distance thresholds. This approach identifies the point at which further

increases in the cutoff yield only marginal changes in ρ̂.10 In the left panel of Figure 3, which

9There are several methods for estimating G when weights are unknown (e.g., Bhattacharjee and Jensen-
Butler, 2013, Sun, 2016, Lam and Souza, 2020, De Paula et al., 2025), as well as methods that endogenize
the weights (e.g., Kelejian and Piras, 2014, Qu and Lee, 2015, Qu et al., 2016, 2017). Endogenizing G is
beyond the scope of our paper. Instead, we focus on sensitivity analyses using alternative definitions of G to
ensure that our results are not driven by a particular specification.

10Note that when the cutoff exceeds approximately 1,000 meters for property crime, |φρ| > 1, indicating
an explosive spatial process.
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Figure 2: The Spatial Network: An Example

Notes. The figure represents a selected neighborhood (shown in darker green), chosen to provide a graph-
ical illustration of the network. The lighter green areas represent the network, consisting of neighboring
neighborhoods whose centroids fall within an 800-meter Euclidean distance from the centroid of the selected
neighborhood. The red circle indicates the 800-meter radius, marking the boundary within which these neigh-
boring neighborhoods are included in the network. LSOA boundaries are from the 2011 Census shapefiles
(https://geoportal.statistics.gov.uk).

displays the spatial autocorrelation parameter (ρ̂) for property crime, we observe a distinct

“elbow” pattern. ρ̂ shows a rapid decline from 400 meters to 800 meters, beyond which the

rate of decline significantly slows. This indicates that the marginal impact of including more

distant neighbors on the spatial autocorrelation becomes substantially smaller, supporting

our choice of the 800-meter cutoff. The right panel displays the estimates for violent crime,

revealing a similar but less pronounced pattern. First, we observe a relatively smaller es-

timated spatial autocorrelation compared to property crime. Second, although the pattern

also flattens out at 800 meters, ρ̂ becomes statistically insignificant already after 700 meters,

suggesting a lack of reliable spatial correlation beyond this point. We will return to the

important difference in the estimated spatial autocorrelation parameters between property

and violent crime later in our analysis.

The specification of the spatial weights matrix is crucial, as it directly influences the

estimated spatial dependencies and the resulting policy implications. To rigorously assess the

robustness of our findings to different spatial assumptions, Section 4 examines an alternative,

contiguity-based specification of G.
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Figure 3: Choosing G
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Notes. The figure shows estimates of ρ̂ and 95% confidence intervals from Equation 1 for different distance
cutoffs of the spatial weights matrix G for property crime (left panel) and violent crime (right panel). The
X-axis represents the distance cutoff (in meters). The matrix G is defined as 1 for neighborhoods within m
meters of the selected neighborhood centroid, and 0 otherwise, where m represents various distance cutoffs.

4 Results

4.1 Main Results

Baseline estimates for Equation (1) are presented in Table 2. Our preferred panel estimates

from the Spatial Durbin model (SDM) are reported in columns 1 and 3 for property and

violent crime, respectively. For comparative purposes, columns 2 and 4 present the panel

estimates based on the Spatial Autoregressive model (SAR). The SAR only includes spatial

lags of the dependent variable, meaning it captures the extent to which crime in one area

is influenced by crime in neighboring areas, providing a useful contrast to the SDM’s fuller

specification.

The spatial lag estimate ρ̂ in the SDM for property crime is 0.049, statistically significant

at the 1% level. This indicates significant spatial autocorrelation, suggesting that property

crime rates in one area are positively influenced by those in neighboring areas. To quantify

the magnitude of the spillover effect, we calculate the spatial multiplier as 1
1−ρ̂ḡ , where ḡ

represents the average network size. This calculation is based on y = (I − ρG)−1ε, which is

a transformation derived from the simplified (for exposition purposes) version of Equation 1,

y = ρGy+ ε. Using the average network size of 8.48 neighborhoods, the spatial multiplier is

approximately 1.71. This implies that property crime rates within an average-sized network

are 71% higher than they would be in isolated neighborhoods, highlighting the substantial

amplifying effect of spatial interactions. This spillover effect highlights the critical role of
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geographic and spatial dynamics in shaping crime rates. It suggests that interventions tar-

geting crime in one area may have significant impacts on surrounding areas, underscoring

the need for coordinated strategies in crime prevention policies, as our simulation exercise in

the next section will reveal.

Table 2: Spatial Estimates of Crime – Baseline

Property Violent

G × N. Crimes (ρ̂) .049*** .049*** –.000 .000

(.004) (.004) (.002) (.002)

Population Size .031** .031** .010*** .011***

(.012) (.012) (.002) (.002)

N. Unemployed .067 .055 –.076*** –.098***

(.098) (.093) (.023) (.022)

National Living Wage –.039 –.039 –.026** –.027**

(.056) (.056) (.012) (.012)

G × Population Size .002 .001

(.003) (.001)

G × N. Unemployed –.008 –.019***

(.015) (.005)

G × National Living Wage –.008 .002

(.019) (.005)

Model specification SDM SAR SDM SAR

Neighborhood Fixed Effects Yes Yes Yes Yes

Neighborhood Time Trends Yes Yes Yes Yes

Pseudo-R2 0.007 0.004 0.004 0.003

N 33,845 33,845 33,845 33,845

Notes. Standard errors in parentheses clustered at the LSOA level. Estimates are obtained using maximum
likelihood. SDM = Spatial Durbin Model; SAR = Spatial Autoregressive Model. The dependent variable is
the number of crimes occurring in a LSOA in each year. G × N. Crimes is the spatial lag of the dependent
variable. For the definition of G see subsection 3.1. Definitions of the remaining variables and the data sources
are provided in section 2. The Pseudo-R2 refers to the within R2. ∗ p < .10; ∗∗ p < .05; ∗∗∗ p < .01.

When interpreting the estimates, it is useful to consider both the potential drivers of

the spatial lag and how it is identified within our model. The positive spatial correlation

may arise through various channels, including supply- and demand-side spillovers, as well as

the transmission of localized shocks across neighborhood boundaries in the short to medium

run. In our model, the spatial lag coefficient ρ̂ is identified conditional on neighborhood

fixed effects, which absorb all time-invariant characteristics, and on neighborhood-specific

linear time trends, which account for systematic local trends over time. These controls are

crucial in isolating the estimated spatial effect from stable or slowly evolving factors – such

as demographic composition, housing stock, or policing infrastructure – that may influence
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crime but are unlikely to fluctuate significantly in the short run.

The model also controls for additional time-varying economic factors, such as unemploy-

ment and the national living wage, which may influence the demand for crime. While both

variables exhibit the expected sign, they are statistically insignificant. Population size is

positively and significantly associated with property crime, as expected. Additionally, some

coefficients, particularly the spatial lag of population size, suggest a degree of spatial spillover

in socio-economic factors influencing crime, further motivating the use of the SDM. The es-

timated ρ̂ could be further influenced by supply-side mechanisms that exhibit spatial and

temporal variation and are not directly accounted for in the estimation. These may include

the spatial mobility of offenders, the operation of co-offending networks spanning multiple

neighborhoods, or the diffusion of criminal opportunities and information. In Section 6, we

further investigate these mechanisms to better understand the sources of spatial spillovers in

crime. None of the spatial lags of the dependent variables in the SDM for property crime

are significant. This is also mirrored in the SAR results for the spatial lag of property crime

being remarkably consistent with those from the SDM.

For violent crime, the panel estimates show no significant spatial spillover effects, as

indicated by the statistically insignificant spatial lag estimates for both the SDM and the

SAR. This suggests that, unlike property crime, violent crime in a given area is not strongly

influenced by crime levels in neighboring areas. This result is also consistent with the vi-

sual patterns observed in Figure 1, which showed relatively less clustering of violent crime

in the top 500 crime areas. One of the potential explanations for this may be the more

spontaneous and spatiotemporally random nature of violent crimes, which tends to be re-

active and impulsive—often arising from personal conflicts, domestic violence, or substance

abuse. These crimes are less likely to spread across spatial boundaries, as they are driven by

individual-level factors rather than broader environmental ones. In contrast, property crime

often involves more planning and is more opportunistic, making it more likely to exhibit

spillover effects. Additionally, violent crime may be contained by localized social norms or

enforcement strategies, especially when it occurs in private settings.

Turning to the other control variables, columns 3 and 4 show that both population and

the NLW show statistically significant coefficients, with the expected sign. A puzzling result

is the negative relationship between unemployment and violent crime, which seems counterin-

tuitive given the expectation that worsening economic conditions should lead to higher crime.

However, it is important to recognize that violent crime, encompassing offenses like assault,

domestic violence, and robbery, has different patterns and determinants than property crime.

While robbery may be more sensitive to economic fluctuations, the effect of unemployment
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on other violent crimes, such as domestic violence, is less straightforward.11

To further understand the null results for violent crime and the importance of controlling

for unobserved heterogeneity, in Table A2 in the Appendix we compare cross-sectional esti-

mates for each year (using both ML and 2SGLS) with panel estimates. The results reveal

that neglecting unobserved fixed neighborhood characteristics and local-specific linear trends

leads to upwardly biased estimates, especially for the spatial lag coefficient. While the bias is

moderate for property crime, it is substantial for violent crime. For the latter, cross-sectional

estimates of spatial spillovers are entirely spurious, a mere artifact of unobserved heterogene-

ity. This starkly underscores the necessity of our panel approach, as cross-sectional methods

would yield fundamentally misleading conclusions.

4.2 Robustness checks

To thoroughly assess the consistency of our findings, we conducted several robustness tests,

exploring variations in network definitions, outcome variables, and estimation techniques.

These checks are designed to probe the sensitivity of our spatial spillover estimates and to

ensure the validity of our conclusions under alternative assumptions. The results of these

tests are presented in Table 3.

First, we examined the impact of network definition by constructing a spatial weights ma-

trix, G, based on contiguity rather than distance. This specification defines a neighborhood’s

network as those areas sharing a border or corner, thus testing whether adjacency-based spa-

tial dependence yields different spillover effects compared to distance-based proximity. This

exercise is particularly interesting given that the geographical size of neighborhoods is het-

erogeneous due to the relatively fixed population size of each LSOA, with less populated

neighborhoods in peripheral areas physically larger than densely populated neighborhoods in

inner London. Remarkably, the overarching pattern of our results remains consistent: signif-

icant spatial correlations persist for property crime, while violent crime continues to exhibit

no significant spatial spillovers.12

Next, we examined the robustness of our results to the choice of dependent variable

11One possible interpretation for this negative relationship is that unemployment may reduce violent crime
in public spaces. Unemployed individuals often spend more time at home, which can limit their opportunities
for engaging in public violence. Furthermore, it is conceivable that some criminals may “substitute” between
property and violent crime, focusing more on property crime when unemployment increases.

12While the estimates from this specification are not directly comparable with those in Table 2 due to
the change in weighting matrix, they provide valuable insights into the sensitivity of spatial spillover effects
to the definition of neighboring areas. Notably, for property crime, the spatial lag estimate of 0.112 implies
a substantial spatial multiplier of 3.02, significantly exceeding the 1.71 obtained with the distance-based
matrix. This discrepancy likely arises from the nature of contiguity matrices, which define connections solely
based on adjacency, potentially overestimating spatial spillovers in contexts where distance plays a significant
role.
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by replacing crime counts with crime rates (columns 2 and 6). This specification directly

addresses potential scaling effects by accounting for population size through the denominator,

allowing us to assess whether our findings are sensitive to the use of raw crime counts versus

rates.13 Notably, the spatial lag estimates for both property and violent crimes remain

remarkably consistent with those in Table 2, further reinforcing the robustness of our main

findings.

In the final set of results, we present estimates from two alternative instrumental variable

approaches. First, we utilize the approach introduced by Baltagi and Liu (2011), which

extends the GS2SLS technique of Kelejian and Prucha (1998) to panel data. This method

addresses the endogeneity of the spatial lag by employing higher-order spatial interactions

of the dependent variable as instruments. Specifically, we instrument Gy with G2X, where

G2 maps the neighbors of neighbors, or ‘distance-two’ neighborhoods. The rationale behind

this instrument is that the characteristics of second-order neighbors are correlated with the

endogenous spatial lag but are likely to be uncorrelated with the error term in the main

equation. By leveraging second-order neighbors’ exogenous characteristics as instruments,

we mitigate simultaneity bias in spatial interactions. For our analysis, G2 assigns a value of

1 to neighborhoods whose centroids are within 800 meters of the centroid of the first-order

neighborhoods (i.e., G). Figure A2 in the Appendix provides an illustrative example of first-

order and second-order neighbors for a selected neighborhood. Results in columns 3 and 7 are

consistent with our baseline findings, though the estimated spatial lag for property crime is

somewhat larger than in Table 2. While first-stage diagnostics indicate that the instruments

for property crime are relevant, concerns emerge about potential instrument weakness in the

case of violent crime.

In the second instrumental variable approach, we employ an “external” instrument using

a shift-share strategy. Instead of using G2X as an instrument, we utilize G2z, where z

represents the shift-share instrument for crime. This shift-share instrument is constructed

as:

zit =
yi2012∑4835
j=1 yj2012

×
4835∑

j=1,j 6=i

yjt (2)

Here, the share component, yi2012∑4835
j=1 yj2012

, captures the proportion of total crime in 2012

accounted for by neighborhood i. The shift component,
∑4835

j=1,j 6=i yjt, represents the annual,

13In this specification, population size is inherently controlled through the denominator in the crime
rate, eliminating the need for a separate population control. Similarly, unemployment is measured as the
unemployment rate, rather than the absolute number of unemployed individuals.
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leave-one-out sum of crime across all neighborhoods, excluding neighborhood i. By using

G2z, we make use of second-order neighborhood crime dynamics while ensuring that the

instrument primarily reflects variation in crime driven by broader spatial trends rather than

local simultaneity. Columns 4 and 8 of Table 3 show that the estimates of the spatial lag

remain broadly consistent with the results so far, reinforcing the robustness of our findings.

However, the spatial lag coefficient for property crime is again somewhat larger than in

the baseline specification. Notably, the first-stage F-statistic indicates that the shift-share

instrument is strongly relevant. The estimates for violent crime are also in line with the null

effect observed thus far. Importantly, the shift-share instrument performs well, reassuring us

that the observed null result is not attributable to potential instrument weakness. Overall,

the consistency of the GS2SLS results with our baseline findings provides further evidence of

the robustness of our spatial spillover estimates

5 Key Player Analysis

Building on the spatial model estimates, this section presents the key player analysis. We

begin by deriving the intercentrality measure and ranking key player neighborhoods. We

then evaluate the policy implications of targeting these key players, comparing this strategy

to traditional hot spot policing through a simulation exercise. This allows us to evaluate the

crime impact of shifting from hot spot to key player targeting, and to identify the areas where

police resources should be reallocated. Finally, we quantify the potential financial savings

achievable through the key player policy.

5.1 Deriving the Key Player

We follow the seminal approach of Ballester et al. (2006) in defining key players. In their

paper, they formalized the concept of key players as the most influential nodes in a network,

whose removal maximally reduces the system’s equilibrium outcome. In our context, the key

player is the neighborhood that has the largest influence in propagating crime spillovers to

other neighborhoods.

The first step to identify the key player neighborhoods involves calculating the Katz-

Bonacich centrality measure (Ballester et al., 2006). This quantifies the influence of each

neighborhood within the crime network, taking into account both direct and indirect con-

nections. It is defined as:

bit = (I− ρ̂G)−1R̂HSit, (3)
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Table 3: Spatial Estimates of Crime – Robustness

Property Violent

Contiguity Crime Instrumental Variable Contiguity Crime Instrumental Variable

Matrix Rates G2 × X G2 × z Matrix Rates G2 × X G2 × z

G × N. Crimes (ρ̂) .112*** .048*** .076*** .107*** .003 –.004 –.023 .020

(.015) (.004) (.021) (.027) (.004) (.004) (.058) (.083)

Population Size .025*** .029** .027** .010*** .011*** .010***

(.009) (.012) (.011) (.002) (.003) (.003)

N. Unemployed .050 .019 .064 .060 –.064*** .004 –.081*** –.071**

(.085) (.043) (.095) (.094) (.024) (.013) (.028) (.030)

National Living Wage –.022 –.000 –.039 –.039 –.027** –.000** –.026** –.027**

(.041) (.000) (.052) (.049) (.012) (.000) (.013) (.013)

G × Population Size .002 –.003 –.008* .001 .001 .000

(.003) (.004) (.005) (.001) (.001) (.001)

G × N. Unemployed –.001 –.011 .003 .016 –.035*** –.011*** –.023** –.016

(.022) (.008) (.015) (.017) (.007) (.003) (.011) (.014)

G × National Living Wage –.007 –.000 –.016 –.025 –.000 –.000 .002 .003

(.028) (.000) (.020) (.023) (.006) (.000) (.005) (.005)

Neighborhood Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Neighborhood Time Trends Yes Yes Yes Yes Yes Yes Yes Yes

Pseudo-R2 0.004 0.001 0.005 0.001

N 33,845 33,845 33,845 33,845 33,845 33,845 33,845 33,845

First Stage

G2 × Population Size .048*** .003*

(.015) (.002)

G2 × N. Unemployed –.222*** –.054***

(.084) (.013)

G2 × National Living Wage .364*** .008

(.072) (.012)

G2 × Shift Share 1.158*** .081***

(.092) (.021)

First-Stage F-Statistics 15.246 157.674 7.321 14.715

Notes. Standard errors in parentheses clustered at the LSOA level. Estimates for the models Contiguity
Matrix and Crime Rates are obtained using the maximum likelihood. Estimates for the models Instrumental
Variable are obtained using instrumental variable estimation. The dependent variable is the number of crimes
occurring in a LSOA in each year, except for the models Crime Rates, where the dependent variable is the
number of crimes divided by the total population. G × N. Crimes is the spatial lag of the dependent variable.
For the definition of G see subsection 3.1. In the models Instrumental Variable, the term G × N. Crimes is
instrumented using: higher order spatial lags of the exogenous regressors (column G2 ×X) or the distance-
two spatial lag of the shift-share (column G2×z). See subsection 4.2 for details. Definitions of the remaining
variables and the data sources are provided in section 2. The Pseudo-R2 refers to the within R2. ∗ p < .10;
∗∗ p < .05; ∗∗∗ p < .01.

where I is the identity matrix, and R̂HSit = X ′itβ̂ + γ̂GX ′it + δ̂t + η̂iτ + ε̂it. bit reflects

the “total crime” in a neighborhood, capturing both the direct effect of local crime and the

externalities generated by spatial spillovers from neighboring areas. The “key player” is then

identified as the neighborhood with the highest kit value, calculated as (see Ballester et al.,
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2006, 2010):

kit=
bit

∑
j Mij

Mii
=bt − b

[−i]

t , (4)

where Mij is the (i, j) cell of M = (I − ρ̂G)−1, and bt =
∑4835

i=1 bit. Importantly, Equation

(4) highlights that the sum of all key player contributions,
∑4835

i=1 kit, corresponds to the

aggregate crime in the network, bt. Conceptually, the key player is the area whose removal

leads to the largest reduction in total crime, represented by bt − b
[−i]

t .

Once we have identified the kit for each neighborhood, we can rank them from the largest

to smallest value. This ranking is the first step that allows us to prioritize neighborhoods

for targeted intervention to achieve the greatest reduction in overall crime. While kit varies

over time due to the longitudinal nature of the data, the rankings exhibit notable stability.14

Therefore, to simplify the exposition, we will use k̃i, the time-averaged kit, to visualize our

results and presents our simulations.

5.2 Policy Simulation

The key player approach is particularly insightful for policy simulation, especially in the

context of crime. It allows for a direct comparison with real-world, existing crime intervention

strategies, such as hot spot policing, which are currently implemented by law enforcement

agencies. Acknowledging the scarcity of resources, hot spot policies prioritize interventions in

a subset of high-crime areas to maximize crime reduction, a strategy that is often practically

appealing for law enforcement because it allows for focused and cost-effective allocation of

resources within a manageable number of areas. To illustrate why hot spot policies are

often considered efficient, let us consider our case study of London. In Figure 1, we showed

that 500 hot spots (approximately 10% of all neighborhoods) account for over 1/3 of total

crime. Given the concentration of crime in these limited areas and the scarcity of resources,

law enforcement agencies would find it intuitive to prioritize these hot spots. Therefore, a

compelling question arises: how would crime reduction compare if, instead of targeting the

top 500 hot spots, we were to target the 500 highest-ranked key players? Our simulation

exercise directly addresses this. We compare the network-wide crime reduction achieved by

focusing interventions in the neighborhoods with the highest observed crime levels with the

reduction achieved by prioritizing interventions in the neighborhoods with the highest value

14Figure A3 in the Appendix demonstrates that although 500 distinct key players are identified each year,
nearly 70% of them remain consistent over the 7-year period.
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of intercentrality, as calculated in the previous subsection.15

We begin our simulation by outlining how we evaluate the crime reduction impact of the

key player policy. We start from the definition of a key player as the neighborhood whose

removal produces the highest reduction in crime within the network. Let us denote this value

as k̃1
i , where the superscript indicates the rank in terms of intercentrality. The objective is to

compute and sum all crime reductions from the first to the 500th key player neighborhood,

i.e., k̃1
i , . . . , k̃

500
i , and assess how this sum compares to the total crime in the network, which,

as previously noted, equates to
∑4835

i=1 k̃i = b̃. A key challenge arises, however, in that we

cannot simply remove the top 500 key players simultaneously. The removal of a collection of

key players – or a key group – is, as discussed in Ballester et al. (2010), an NP-hard problem.

In other words, as the network grows, the number of possible key groups to eliminate increases

exponentially, making it computationally infeasible to determine the optimal solution (i.e.,

the configuration that yields the highest crime reduction) within a reasonable amount of time.

Fortunately, Ballester et al. (2010) derive a method to efficiently approximate the impact of

removing a key group. They demonstrate that the optimal key group, which maximizes the

reduction in network-wide crime, can be approximated using a greedy algorithm.16

To implement the greedy algorithm, we begin by identifying the neighborhood with the

highest intercentrality within the network, k̃1
i . We then remove this neighborhood, which

reduces the network size to N−1 and results in a network-wide crime level of b[−1]. Next, we

identify the neighborhood with the highest intercentrality in this smaller network, namely k̃2
i ,

and remove it, resulting in a successively smaller network and an updated measure of total

network-wide crime. We iterate this process until we have eliminated the top 500 key player

neighborhoods from the network. For each iteration, we calculate the proportional reduction

in network-wide crime associated with the removal of the key player. This corresponds to

the ratio of the neighborhood’s intercentrality to the sum of intercentrality measures across

all neighborhoods in the original network before any removals. Summing these individual

reductions across all 500 iterations gives the cumulative relative crime reduction after remov-

ing the key group, denoted as Dk =
∑500

i=1 k̃i/
∑
i = 14835k̃i. The superscript k indicates that

the neighborhoods are ranked and summed according to their intercentrality in the greedy

algorithm.

For the hot spot policy, we use a similar approach, but with a crucial difference. Instead

of removing neighborhoods ranked by intercentrality, we iteratively eliminate the 500 areas

with the highest crime levels. The crime reduction is still calculated using the intercentrality

15Indeed, selecting the number n of areas for the simulation exercise involves a degree of discretion,
and alternative values can be explored. For this reason, while we focus on the example of 10% of areas, our
simulation allows for comparing the impact between the two policies across the entire range of neighborhoods.

16The authors also show that the approximation error from the greedy algorithm is relatively small.
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measure for these areas, following the same formula as above: Dy =
∑500

i=1 k̃i/
∑
i = 14835k̃i.

The key distinction lies in the order of elimination: the hot spot policy iteratively eliminates

areas ranked by crime levels (as denoted by the superscript y), rather than intercentrality.

To gain a deeper understanding of the comparative performance of the key player and

hot spot policies, it is insightful to plot the cumulative crime reductions, Dk and Dy, as a

function of the number of areas removed. This visual representation, presented in Figure 4,

allows us to directly observe and analyze the relative effectiveness of the two policies across

varying intervention scales. While the hot spot policy achieves a notable reduction in crime,

the key player approach consistently yields a significantly greater reduction. Specifically, the

removal of the top 500 hot spots results in a 54.4% reduction in the total network-wide crime;

in contrast, the key player policy achieves a 60.2% reduction, a 5.8 percentage point increase

in effectiveness. Figure 4 also reveals that the magnitude of relative gains achieved by the

key player policy varies significantly across different intervention scales.17

Figure 4: Comparing Key Player and Hot Spot Policies: Impact on Crime Reduction
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Notes. The Y-axis represents the cumulative reduction in crime for property crime (left panel) and

violent crime (right panel), measured as Dk =
∑500

i=1 k̃i/
∑4835

i=1 k̃i for the key player policy and as

Dy =
∑500

i=1 k̃i/
∑
i = 14835k̃i for the hot spot policy, where k̃i represents the intercentrality measure

(average over time) calculated according to the formula reported in the text. The X-axis represents areas
ranked in terms of intercentrality measure (for the Dk graph) and in terms of observed crime (for the Dy

graph). The X-axis only represents the first 2,000 neighborhoods. For full representation, see Figure A8 in
the Appendix.

17The highest relative reduction in crime is achieved when targeting the first 150 key players (approxi-
mately 3% of the total), yielding an 11.5 percentage point greater crime control than the hot spot policy.
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In the right panel of Figure 4, we observe a striking contrast for violent crime. Here, the

cumulative crime reduction curves for the key player and hot spot policies exhibit a near-

perfect overlap, indicating identical performance. This unequivocally demonstrates that for

violent crime, there is no discernible incremental benefit derived from adopting the key player

approach over the hot spot strategy. This outcome stems from the absence of significant

network effects for violent crime, as reflected in our estimates in Table 2.18

In Figure A7 in the Appendix, we also compare the key player policy with an alternative

policy where police resources are randomly allocated. That is, the greedy algorithm is cal-

culated by iteratively eliminating neighborhood in a random order. The random allocation

policy serves as a counterfactual, demonstrating the value of targeted intervention strategies

vis-à-vis an arbitrary policy of crime removal.

Having demonstrated the key player policy’s superior efficacy in crime reduction, several

key questions naturally arise. Which neighborhoods are identified by the key player pol-

icy, and where are they located? Furthermore, what factors contribute to the key player

neighborhoods’ greater effectiveness in reducing crime compared to hot spots? We address

the former questions in the remainder of this section, while the analysis of the mechanisms

underlying key player effectiveness is deferred to next section.

5.3 Mapping the Key Players

The simulation results presented in Figure 4 reveal a stark divergence in the efficacy of the

key player policy between property and violent crime. For violent crime, the near-perfect

overlap of the cumulative crime reduction curves indicates that both key player and hot

spot strategies identify virtually identical neighborhoods, and that these neighborhoods are

ranked in a very similar way in terms of crime level and intercentrality. This suggests that

the current resource allocation for violent crime is optimal, as the key player policy would

not yield any additional crime reduction compared to the hot spot strategy.

For property crime, a significant discrepancy emerges, with approximately one-third (154)

of hot spots and key players exhibiting non-overlap.19 This non-overlap signifies a critical

opportunity for resource reallocation, as shifting resources from high-crime areas to neighbor-

hoods with high intercentrality can enhance crime reduction. To effectively re-target police

18Figure A6 in the Appendix provides an alternative representation of the spatial spillover differences
between property and violent crime by comparing observed crime levels with the (predicted) intercentrality

measure k̃i. For property crime, the scatter plot reveals significant deviations from the 45-degree line,
particularly in neighborhoods with medium to low crime levels, indicating substantial spatial spillover effects.
Conversely, for violent crime, the strong alignment of observations along the 45-degree line indicates a high
correlation between observed crime and intercentrality, suggesting a negligible presence of spatial spillovers.

19Although our simulations use time-averaged data, it is worth noting that the share of non-overlapping
key player and hot spot neighborhoods remains relatively stable over time, as shown in Figure A4.
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resources, we must determine the location of these non-overlapping areas. Figure 5 visu-

ally compares the spatial distribution of neighborhoods under the hot spot and key player

policies, for both property and violent crime. Blue-colored neighborhoods represent “hot-

spot-only”, i.e., areas that exhibit high crime but are not identified among the top 500 key

players. Black-colored neighborhoods are “key-player-only”, meaning they are influential in

crime spread (high intercentrality) but are not among the top 500 crime areas. Gold-colored

neighborhoods are those that overlap between the two policies, representing areas where no

resource reallocation is necessary.

Focusing on property crime, Figure 5 essentially shows that the key player policy im-

plies a reallocation of police resources from peripheral hot-spot-only areas to more central

key-player-only neighborhoods.20 Interestingly, central London is predominantly populated

by neighborhoods identified as both key players and hot spots, while key-player-only neigh-

borhoods are disproportionately located on its immediate outskirts. A critical characteristic

of key-player-only neighborhoods is that, by definition, they exhibit crime levels below the

top 500 hot spots. Figure A5 in the Appendix illustrates the crime level distribution be-

tween these two neighborhood types, revealing that key-player-only areas typically present

crime levels that around mean levels. Consequently, these pivotal nodes in crime propaga-

tion are effectively “hiding in plain sight” and thus would receive less resource allocation

than conventional hot spots. This pattern is further illustrated by the spatial distribution

of these neighborhoods in central London. Given that these key-player-only neighborhoods

are spatially clustered and proximate to high-crime areas, their potential to generate spatial

spillovers, while remaining overlooked, becomes a critical consideration for resource alloca-

tion efficiency. To see this point more in detail, Figure A9 in the Appendix illustrates the

spatial distribution of key player neighborhoods, zooming in on central London. We rank the

500 neighborhoods by quintiles of intercentrality, and we represent separately key-player-only

neighborhoods from those that are both key player and hot spot. We note that several of

the neighborhoods with high intercentrality are among those that are both key players and

hot spots. However, we also observe areas of high intercentrality among the key-player-only

neighborhoods. This means that these very influential neighborhoods, despite their lower

crime rates, are located in close proximity to high-crime areas, effectively in a blind spot

relative to concentrated police resources.

A final observation is that the policy decision to reallocate police resources from outer-

London to central neighborhoods, despite its potential to improve crime reduction, entails

potential operational trade-offs and costs. We will discuss these in subsection 5.4.

20In our policy simulations, we assume a complete reallocation of police resources from hot spot to key
player areas. However, any partial reallocation to key player neighborhoods will enhance crime reduction.
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Figure 5: Key Players vs Hot Spots: Location

Hot Spot Policy Key Player Policy

Property Crime

Violent Crime

Key Players
Hot Spots
Key Players / Hot Spots

Notes. The map highlights in blue the hot-spot-only neighborhoods, in black the key-player-only neigh-
borhood and in gold the neighborhoods classified as both key player and hot spot, for property crime (top
panel) and violent crime (bottom panel). Hot spots are identified based on the average annual crime level
for each neighborhood over 2013-2019. Key players are defined based on the intercentrality measure (aver-
age over time) calculated according to the formula in subsection 5.2. The hot spot policy targets the top
500 areas ranked by crime levels. The key player policy targets the top 500 areas ranked by intercentrality
measure. LSOA boundaries are from the 2011 Census shapefiles (https://geoportal.statistics.gov.uk).
Data sources are provided in section 2.

For violent crime, Figure 5 confirms that the key player and hot spot policies are nearly

indistinguishable. The maps corrobroates that almost all neighborhoods identified as key
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players are also hot spots, reflecting the lack of network effects in violent crime, as discussed

earlier. This suggests that reallocating resources from hot-spot-only areas to key-player-only

areas would produce no additional effect. Since virtually all hot spots overlap with key

players, the current hot spot focused approach already captures the most influential areas,

making additional reallocation redundant in this context.

To gain deeper insight into network structures and their role in property crime diffusion,

Figure 6 zooms in on two specific neighborhoods—one key player and one hot spot. This

comparison clarifies how network centrality shapes crime dynamics and highlights the dis-

tinct contributions of these two types of neighborhoods. Specifically, the figure displays two

neighborhoods’ local networks, including all nodes and links up to a distance of four. This

illustration allows to capture a broad range of indirect influences. The top panel shows a

hot spot neighborhood’s local network, and the bottom panel a key player neighborhood’s,

revealing their varying structures. As before, blue represents hot-spot-only neighborhoods,

black indicates key-player-only areas, gold marks neighborhoods classified as both, and grey

denotes locations outside the top 500 in crime levels or intercentrality.

The hot spot neighborhood, located in the London Borough of Haringey, has a relatively

high crime level of 174.7, ranking 477th among all neighborhoods. However, its intercentral-

ity measure is low at 336.5, ranking just 663rd in network influence. While this confirms its

status as a high-crime area, it also suggests that its impact on crime beyond its immediate

surroundings is limited. This neighborhood absorbs substantial criminal activity but does

not function as a major conduit for crime propagation. In contrast, the key player neigh-

borhood, located in Waltham Forest, has a lower crime level of 132.9 (ranked 765th), yet its

intercentrality measure is significantly higher at 714.9 (ranked 301st), more than twice that

of the hot spot.

One might wonder what drives this stark difference in intercentrality, given that the key

player has lower crime and only a slightly larger network size than the hot spot. The answer

lies in the composition of connections. While both neighborhoods contain a similar number

of areas that are classified as both key players and hot spots, their non-overlapping connec-

tions differ. The hot spot network contains relatively more hot spot-only neighborhoods.

This suggests that hot spots tend to be surrounded by other high-crime areas that, while

dense in criminal activity, do not play a central role in crime diffusion. As a result, crime in

these neighborhoods remains largely localized rather than spreading extensively through the

network. The key player network, by contrast, has a larger share of key player-only neighbor-

hoods, which are often connected to or in close proximity to other key player neighborhoods.

This clustering reinforces their systemic role in sustaining and diffusing crime across multiple

neighborhoods.
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Figure 6: Key Players vs Hot Spots: Network Structures

Hot Spot

Key Player

Notes. The figure illustrates the network connections within a four-step range for two selected neighbor-
hoods, highlighting in blue the hot-spot-only neighborhoods, in black the key-player-only neighborhood, in
gold the neighborhoods classified as both key player and hot spot, and in gray the neighborhoods classified
as neither key player nor hot spot.
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This comparison exemplifies the defining characteristic of key players: it is not so much the

number of connections or the crime level, but rather network position that shapes their overall

impact on crime. Key players are embedded in the crime network in a way that amplifies

spillover effects, extending their influence far beyond their own crime levels. While hot

spots draw police attention for their high crime levels, key players serve as critical conduits

in crime diffusion. Removing them disrupts crime not only locally but across connected

neighborhoods, making them a more strategic intervention point.

While these network differences are evident in Figure 6, understanding why key play-

ers disperse crime while hot spots attract it requires further analysis of offender behavior,

mobility patterns, and neighborhood characteristics. These dimensions will be explored in

Section 6.

5.4 Financial Implications of the Key Player Policy

The next phase of our analysis delves into the financial implications of implementing the key

player policy. Specifically, we conduct a comparative assessment of the financial impacts of

the key player and hot spot approaches. Given the lack of impact on violent crime, our focus

will only be on property crime.

To assess the financial implications, we first estimate the total cost of property crime

in London, utilizing detailed unit-cost estimates from Heeks et al. (2018) at the sub-offence

level. We calculate the unit cost of property crime as a weighted average, based on observed

crime rates across sub-offences. This approach yields an estimated average unit cost of

approximately £4,818.

Next, we estimate the projected financial impact of the key player and hot spot poli-

cies. This involves multiplying the cumulative distributions shown in Figure 4 by the total

observed property crime in London and the unit cost of property crime. The resulting finan-

cial estimates for each policy are presented in Figure 7, which also highlights the difference

between the two scenarios.

Given that the key player policy leads to a larger reduction in total crime, the financial

savings from eliminating key player areas would be higher than those from removing hot

spot areas. Specifically, under the key player policy—and assuming police interventions

successfully eliminate property crime within the 500 targeted neighborhoods—the estimated

financial savings would reach approximately £1,415 million. In comparison, the hot spot

policy results in savings of around £1,279 million. As a result, the net annual savings from

switching from the hot spot approach to the key player policy would be approximately £136

million. The figure also illustrates the savings schedule, which represents the difference in

the financial impact between the key player and hot spot policies across various numbers
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of neighborhoods. In particular it highlights how the savings from choosing the key player

policy vary depending on the extent of overlap between the two policies. When the overlap

between the hot spots and the key player areas is minimal, the savings from adopting the key

player policy are larger. However, as the overlap between hot spots and key players increases,

the savings from the key player policy diminish.

Figure 7: Key Players vs Hot Spots – Financial Implications
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Notes. The figure illustrates the financial impact of reducing crimes under the key player and hot spot
policies. The financial impact is calculated by multiplying the unit cost of property crimes by the number
of crimes reduced under each policy. The definition of unit cost of crime is provided in subsection 5.4. The
black curve represents the total financial impact for the key player policy, while the blue curve represents
the total financial impact for the hot spot policy. The dashed gray line shows the difference in financial
impact between the two policies. This difference represents the additional financial benefits of adopting the
key player policy over the hot spot policy.

It is important to recognize that these simulations assume a frictionless transition from

the hot spot policy to the key player policy, with no associated costs. In practice, however,

reallocating police resources—such as shifting officers from outer to inner London, as in

our example—may entail some logistical and financial challenges, including retraining costs

and adjustments in deployment strategies. Additionally, changes in police presence could

influence public perceptions of safety, particularly in areas where patrol coverage is reduced.

At the same time, concerns may also arise in neighborhoods receiving increased policing,

especially if these areas are already subject to heightened surveillance or have communities

that feel disproportionately targeted.

While these factors warrant consideration, the substantial financial savings projected

under the key player policy suggest that such a reallocation could be both cost-effective

and impactful. Moreover, the long-term benefits of disrupting crime spillovers may extend
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beyond immediate financial gains, reinforcing the case for a more network-informed approach

to policing. Ultimately, understanding both the benefits and the practical considerations

of reallocating police resources will be key to effectively implementing this network-based

strategy for crime reduction.

6 What Shapes a Key Player Neighborhood?

What differentiates key player neighborhoods from hot spot neighborhoods, and why is it

more impactful to target the former than the latter? In this section, we aim to address these

questions using a two-pronged approach. First, we take a broad view of the neighborhoods,

comparing the characteristics of key player neighborhoods and hot spot neighborhoods across

two key dimensions: the sociodemographic nature and the built environment. Next, we focus

on offenders, utilizing detailed data on those accused of crimes in London, which includes

precise locations of residence and offense, as well as information on co-offending networks.

This exercise will enhance our understanding of why key player neighborhoods are so effective

at propagating crime, namely whether this is due to the built environment, the criminal

tendencies of the residents, or a combination of both.21

6.1 Characterizing Hot Spot and Key Player Neighborhoods

Table 4 allows a comparison of the sociodemographic and built environment dimensions

of these neighborhoods. From this table, we take three key findings. First, key-player-only

neighborhoods are statistically significantly more deprived than hot-spot-only neighborhoods.

One can see this directly by noting that the multi-dimensional deprivation index is 11.6

percentile points higher in key-player-only neighborhoods and indirectly by noting higher

rates of both social housing accommodation and being out of the labor force. The remaining

key findings relate to differences in the built environment of key-player-only vs. hot-spot-only

neighborhoods. The second key finding is that hot-spot-only neighborhoods possess more

features that can make these areas crime attractors, such as an abundance of parks, green

spaces, and transport hubs. These features are likely to increase the inflow of both potential

offenders and potential victims. We return to this point in Table 5. The last key finding is

that key-player-only areas are located closer to the center of London and therefore have much

higher population density. This suggests that criminals living in these neighborhoods can

more easily find both criminal partners and potential victims in closer proximity to home,

points we will empirically explore in the next subsection.

21Our focus remains on property crime, as this is where the overlap between key player and hot spot
neighborhoods is minimal, allowing for the greatest potential reduction in crime.
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Table 4: Key Player vs. Hot Spot Neighborhoods: Area-Based Differences

(1) (2) (3)

Key-Player-Only
Neighborhood

Hot-Spot-Only
Neighborhood

p-Value: Test of
Equality Across

Areas

Neighborhood-Based Attributes

Percentile Rank: Deprivation 65.6 54.0 [0.000]

%Social Housing 33.7 22.7 [0.000]
%Private Rented Housing 31.9 30.4 [0.234]
%Homeowner 30.8 43.6 [0.000]

%Routine Occupation 7.0 7.9 [0.025]
%Not in Labor Force 10.1 8.8 [0.012]
%Never Worked 7.8 6.7 [0.012]
%Long-Term Unemployed 2.3 2.1 [0.104]

%Non-White 44.0 42.6 [0.516]

Spatial Aspects of the Neighborhood

%Area Coverage: Green Space or Parks 7.6 12.8 [0.009]
%Railway or Metro Station Located in Area 13.0 31.8 [0.000]
Number of Bus Stops 3.2 7.9 [0.000]

Population Density 160.7 62.6 [0.000]
Distance to Center of London (km) 6.5 12.8 [0.000]

Notes: N=154. Neighborhood measures are based on the hot-spot/key-player classification for property crime.
There are 500 hot spot neighborhoods and 500 key player neighborhoods. The number of non overlapping neigh-
borhoods – hot-spots-only and key-player-only neighborhoods – is 154 (31%). The crime variables are the total
number of crimes divided by the total number of neighborhoods, further divided by five—the number of years of
data. As such, these crime outcomes are annualized crime rates per neighborhoods. Crime variables are based on
property crime only. We additionally compute regression-based p-Values of difference in means. These are based
on a neighborhood-level regression of the variable of interest on a constant and an indicator for key-player area,
with Eicker-Huber-White standard errors. Neighborhood-Based Attributes are obtained from the 2011 Census.

6.2 Differential Spatial Search Patterns

We next examine various aspects of offender behavior among individuals residing in and

committing offenses within key-player-only and hot-spot-only neighborhoods. The results

are presented in Table 5. We utilize complementary crime data from restricted-access records

of individuals accused of crimes in London, covering nearly the same period as our primary

analysis (2015 to 2019).22 This offender-level data provides a unique perspective for un-

derstanding spatial patterns of crime, illuminating both the locations of offenses and the

residences of offenders. This dual perspective allows for the measurement of “crime commut-

ing” distances—reflecting how locally offenders operate—and facilitates an exploration of two

mechanisms underlying spatial crime diffusion. First, offenders may extend their activities

beyond their home neighborhoods into neighboring areas, thereby contributing to spatial

22Although individual-level “accused data” are not directly comparable to reported crime data, they offer
valuable insights into criminal activity during the relevant time frame and in the specific neighborhoods
we analyze. Figure A10 in the Appendix presents a scatter plot comparing the average number of crimes
across neighborhoods in London from the accused and reported crime datasets. While the scales of the two
data sources differ (due to differing definitions of crime), the graph indicates a high correlation between the
accused and reported crime data, serving as a reliable representation of crime patterns in London.
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correlation through individual mobility. Second, co-offending networks, where offenders col-

laborate across proximate neighborhoods, may further amplify the diffusion of crime.

Table 5: Key Player vs. Hot Spot Neighborhoods: Offender-Based Differences

(1) (2) (3)

Key-Player
Area

Hot-Spot
Area

p-Value: Test
of Equality

Across Areas

Resident-Based Measures

%Part of Co-offending Network 17.9 19.9 [0.113]
Number Offenders per Crime 1.25 1.31 [0.260]
Number Offenders per Crime | Multiple Offenders 2.42 2.53 [0.850]
Minimum Distance Residence to Co-Offender Residence 4.19 6.19 [0.000]
Mean Distance Residence to Co-Offender Residence 5.51 7.13 [0.007]

%Commit Crime Outside Home Neighborhood 88.8 84.5 [0.000]
Crime Commute Distance (km) 3.83 4.86 [0.000]

Crimes by Residents 12.08 11.68 [0.322]

Offense-Based Measures
Crime Commute Distance (km) 3.64 5.01 [0.000]

Crimes Committed in Area 9.28 18.35 [0.002]

Combined Measures
Deprivation Percentile Rank Gap: Offense-Residence –9.5 –6.7 [0.239]

Ratio of Crimes Committed in Area
to Number of Crimes by Residents 0.769 1.571 [0.000]

Notes: N=154. Area measures are based on the hot-spot/key-player classification for property crime. There are
500 hot-spot areas and 500 key-player areas. The number of non overlapping areas – areas that are hot-spots
only and key-players only – is 154 (31%). For Resident-Based Measures, we compute statistics based on offender
neighborhood of residence. For Offense-Based Measures, we compute statistics based on neighborhood of offense
location. The crime variables are the total number of crimes divided by the total number of neighborhoods, further
divided by five – the number of years of data. As such, these crime outcomes are annualized crime rates per area.
Crime variables are based on property crime only. Neighborhoods are LSOAs. We additionally compute regression-
based p-Values of difference in means. These are based on a neighborhood-level regression of the variable of interest
on a constant and an indicator for key-player area, with Eicker-Huber-White standard errors. Neighborhoods are
weighted based on the number of resident offenders. Crime data are from the Metropolitan Police data of individuals
accused of crimes in London and covers the period 1 January 2015-31 December 2019.

We highlight four broad findings from these results. First, the differences in co-offending

network structures do not account for the effectiveness of key-player-only neighborhoods in

crime; we find no significant variation in the size or likelihood of being part of a co-offending

network. Second, residents of key-player-only neighborhoods are no more criminogenic than

their counterparts in hot-spot-only neighborhoods. Third, criminals residing in key-player-

only neighborhoods exhibit significantly more localized crime commuting patterns and tend to

collaborate with more local co-offending partners, likely due to the denser urban environments

found in these neighborhoods. We provide further evidence supporting this third finding in

Section A.6 in the Appendix.

The final and most significant finding emerging from Table 5 relates to the ratio of crimes

committed in a neighborhood to the number of crimes committed by its residents. Our analy-

sis indicates that key-player-only neighborhoods function as “crime dissipators”, as evidenced

by their ratio being below 1 (0.769), suggesting that offenders residing in these neighborhoods
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are more inclined to commit crimes elsewhere rather than within their home neighborhoods.23

In contrast, hot-spot-only neighborhoods display a ratio greater than 1 (1.571).24 This indi-

cates that even if offenders in hot-spot-only neighborhoods were to commit all their crimes

locally, they would account for less than two-thirds of the total crime in those neighbor-

hoods (1/1.571 < 2/3). Thus, hot-spot-only neighborhoods can be characterized as “crime

attractors”, reflecting their capacity to draw offenders from surrounding neighborhoods. En-

vironmental features of these areas, such as parks, green spaces, and transit stations, likely

contribute significantly to their attractiveness for criminal activity.

What we learn from the evidence above is that offenders do not appear to differ in un-

derlying criminogenic tendencies across neighborhood types or in criminal network formation

patterns. However, they do appear to move through space in statistically significantly differ-

ent ways, likely interacting with spatial features of the neighborhood. Given these differences,

we now consider the spatial search patterns of offenders in hot-spot-only neighborhoods and

key-player-only neighborhoods. Can we detect differential search patterns across those living

in the two types of areas? The evidence presented in Figure 8 provides clear support for the

existence of such differences.

To describe spatial search patterns, we make use of neighborhood-level, geocoded data

on (i) the index of local deprivation—a proxy of the likely benefits from crime—and (ii) the

proportion of all local crimes for which an offender was arrested and charged for the crime—a

proxy for the costs of crime, which we call the sanction rate. Given we have the precise

location of offender residence and crime location for all those accused of a crime in London,

we can then calculate how costs and benefits of crime evolve as an offender moves away from

their home. We do so in two ways. First, we calculate the percentile rank of deprivation

and the sanction rate for all areas in 500-meter rings around every offender location—we

label these as potential offense locations. Second, we calculate the same statistics for actual

offense locations, again in 500-meter rings. We then average these for offenders living in

the key-player-only neighborhoods (the left-hand column of Figure 8) and those living in

hot-spot-only neighborhoods (the right-hand column of Figure 8). This allows us to visualize

the full choice set of property offense locations and those chosen by offenders living in the

two areas.

The patterns of spatial search of offenders differ across neighborhoods. Consider the

top row of Figure 8, where we present evidence on the evolution of benefits over space,

as proxied by the index of local deprivation of the neighborhood. Offenders living in hot-

spot-only neighborhoods (Figure 8(b)) do not appear to have sophisticated spatial search

23The ratio is statistically significantly different from 1, with a p-value of 0.006.
24The ratio is statistically significantly different from 1, with a p-value of 0.004.
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Figure 8: Differential Spatial Search Patterns of Offenders by Area of Residence

Key Player Neighborhoods

(a) Crime Benefit Proxy

Hot Spot Neighborhoods

(b) Crime Benefit Proxy

(c) Crime Cost Proxy (d) Crime Cost Proxy

Notes: Figures (a) and (b) show how average neighborhood deprivation evolves as one moves from offenders’ home locations.
For each location, we calculate deprivation at 500m intervals for both actual offense location as well as potential offense location,
the latter of which uses all deprivation measures in a given radius-based ring. We then average these deprivation statistics across
all offenders to calculate the statistics provided in the graphs. Figures (c) and (d) repeat this exercise for the sanction rate in
the area – the proportion of recorded offenses that end up in court. We use this as a measure of the perceived cost of crime.

patterns—the benefit proxy of the locations they target matches the potential locations. Put

differently, offenders in hot-spot-only neighborhoods commit crime conditionally randomly.

A different pattern emerges for those living in key-player-only neighborhoods (Figure 8(a)).

While close to home, the benefit proxy for actual and potential locations overlaps. Once these

offenders move further afield, however, they target considerably less deprived neighborhoods.

Five kilometers from home, offenders from key-player-only neighborhoods commit crimes in

locations with a percentile rank of 53.9, as opposed to the potential percentile rank of 59.8

for this distance. We conclude that these offenders are engaging in more sophisticated spatial
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search, trading off the cost of commuting further for higher returns from crime, as proxied

by the deprivation index of where they commit their property crime.

A second piece of evidence in support of the lack of sophistication of the spatial search

patterns of those living in hot-spot-only neighborhoods can be found in Figure 8(d), where

we consider the spatial evolution of the sanction rate as those living in these neighborhoods

move further from home. The first thing to note is that the potential sanction rate drops

markedly as one moves 500 meters from home—this likely reflects a higher police presence

in these hot-spot-only neighborhoods. Offenders living in these neighborhoods do not take

advantage of this large drop in the potential cost of crime—the areas where they choose to

commit crime remain elevated across the span of distances we consider here. Combining

the evidence from Figure 8(b) and Figure 8(d), we conclude that offenders in hot-spot-only

neighborhoods do not act strategically when searching for crime locations.

For those living in key-player-only neighborhoods, the sanction rate of potential locations

remains extremely constant across space (dashed line, Figure 8(c)). Yet offenders in key-

player-only neighborhoods appear to actively choose to commit crime in higher sanction rate

areas once they leave their home location. Precisely why this is the case, we cannot tell.

From this, we arrive at two conclusions. The first is that the pattern of spatial search differs

in pronounced ways for those living in the two neighborhoods. The most likely candidate for

this is not different levels of criminality of residents of these two neighborhoods (see Table

5), but rather the way that offenders in the two neighborhoods interact with the notably

different urban structures of the two neighborhoods (Table 4). Our second conclusion is

that the spatial search patterns of those living in key-player-only neighborhoods are more

sophisticated than those living in hot-spot-only neighborhoods. We suspect that these dif-

ferences in spatial search behaviors likely play a key role in explaining why key-player-only

neighborhoods propagate crime so effectively.

6.3 Theoretical Insights

Let us develop a simple model to explain why criminals in key-player areas are more likely

to commit crimes outside their area of residence compared to those in hot-spot areas, as

illustrated in Tables 4 and 5 and Figure 8.

Consider two areas indexed by j = 1 and j = 2. Each criminal’s residence is indexed

by i = 1, 2 and is predetermined. That is, we assume that (in the short run), criminals are

exogenously allocated to an area l and need to decide where to commit their crimes. There

is a continuum of criminals in each location, and the total mass of criminals in the economy

is normalized to 1. Let βj represent the proceeds from crime from area j, p ∈ [0, 1] the

probability of being arrested, and σ the cost of punishment.
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There are two types of areas, denoted as l ∈ {K,H}, where K represents a key-player

area, and H represents a hot-spot area. Without loss of generality, assume that a criminal

resides in area 1. Committing a crime in the neighboring area (area 2) incurs a cost. This cost

could arise from commuting expenses as well as from the inherent advantage of familiarity

with one’s area of residence. Criminals typically have better knowledge of their home area,

such as the locations of CCTV cameras and police patrol routes, compared to other areas.

Consequently, the cost of committing a crime outside one’s area of residence (area 2) is

expressed as:

t(θ) = tl0 − τ(θ), (5)

where tl0 > 0, and θ ∈ Θ := [0, 1] represents represents the inverse ability of committing crimes

in areas other than the area of residence. We assume that θ follows a uniform distribution over

Θ. The cost function satisfies the following properties: τ(0) = 0, τ(1) < t0, and τ ′(θ) > 0,

where tl0 represents the maximum cost faced by any individual in area l.

Criminals residing in key-player areas (K) experience lower costs when committing crimes

outside their area of residence compared to those residing in hot-spot areas (H). Formally,

this implies tK0 < tH0 . This distinction highlights the relative ease with which criminals in

key-player areas operate in neighboring locations.

A criminal i (of type θ) residing in area 1 will choose to engage in criminal activities

externally (i.e., in area j = 2) rather than locally (i.e., in their area of residence, j = 1) if

and only if:

(1− p)β1 − pσ ≤ (1− p)β2 − pσ −
(
tl0 − τ(θ)

)
.

For simplicity, assume τ(θ) = τθ, with 0 < τ < tl0. The inequality can be written as:

tl0 ≤ (1− p) (β2 − β1) + τθ.

Since criminals in our dataset reside in poorer areas, they are motivated to commit crimes

in neighboring, wealthier areas. Thus, we assume β2 > β1. This assumption also captures

a psychological distaste for committing crimes in one’s own neighborhood. For instance,

individuals may feel more comfortable stealing from strangers rather than from someone

familiar, such as the local shopkeeper or someone they often see at the pub. In Table

4, we observe that hot-spot areas tend to have a higher concentration of public transport

infrastructure, including bus stops, metro stations, tunnels, and bridges, which enhances

their connectivity and accessibility. These features likely make such areas more attractive
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for criminal activity. In contrast, key-player areas have fewer of these features, potentially

limiting local opportunities for crime and encouraging offenders to operate in nearby areas

that offer better prospects.

Therefore, criminals face a trade-off between committing crimes locally—where the cost

of committing a crime is lower due to familiarity with the area, but the proceeds from crime

are also lower—and committing crimes externally—where the cost of committing a crime is

higher due to unfamiliarity, but the potential proceeds are greater. Solving this trade-off

equation leads to

θ ≥ tl0 − (1− p) (β2 − β1)

τ
.

Let tl0 > (1− p) (β2 − β1) for l ∈ {K,H} and define the critical threshold as follows:

θ̃l =
tl0 − (1− p) (β2 − β1)

τ
.

Proposition 1.

(i) Assume β2 > β1 and (1− p) (β2 − β1) < tl0 < (1− p) (β2 − β1) + τ . Then, all criminals

with θ ≥ θ̃l will commit crimes externally in neighboring areas, while those with θ < θ̃l

will commit crimes internally within their area of residence.

(ii) Further assume tK0 < tH0 . In this case, criminals residing in key-player areas will

commit a higher proportion of their crimes externally compared to criminals residing

in hot-spot areas.

This proposition illustrates that, in equilibrium, criminals in both key-player areas and

hot-spot areas commit crimes both locally and outside their area of residence. However, a

higher proportion of criminals commit crimes outside their area of residence in key-player

areas due to their greater accessibility. This pattern is reflected in the ratio of crimes com-

mitted in neighborhood to the number of crimes by residents, as shown in Table 5. Indeed,

key-player areas act as crime dissipators, characterized by a ratio of crimes committed within

the area to the number of crimes by residents falling below 1 (0.769). This suggests that

offenders residing in these areas are more inclined to commit crimes outside their home area.

Conversely, hot-spot areas function as crime attractors, with a ratio exceeding 1 (1.571).

This indicates their capacity to draw offenders from neighboring areas, making them focal

points for criminal activity.
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7 Conclusions

Our paper introduces a novel framework for crime reduction, shifting from conventional hot

spot policing to a network-based approach that targets key player neighborhoods – areas most

influential in the diffusion of crime. Using London as a case study, we establish the presence

of substantial spatial spillovers in property crime, demonstrating that reallocating resources

from hot spots to these key nodes could lead to greater reductions in overall crime. Based

on simulations that target the 500 most affected areas, we estimate that such a reallocation

could achieve a 5.8 percentage point greater reduction in property crime, translating into

financial savings exceeding £130 million annually. Our results show that these effects are

driven by property crime, with no significant impact on violent offenses. This suggests that

crime diffusion mechanisms primarily operate through economically motivated crimes rather

than violent ones.

Crucially, our analysis highlights a fundamental distinction between conventional hot

spot policing and the key player strategy. Hot spots act as attractors, concentrating crime

in specific locations, whereas key player areas function as diffusors, shaping how crime prop-

agates through the network. By targeting the latter, our approach disrupts the underlying

transmission mechanisms of crime, offering a more strategic and cost-effective alternative to

traditional enforcement strategies.

This shift in focus from crime concentration to crime propagation has important impli-

cations for policing efficiency, particularly in an era of rising crime and constrained budgets.

Rather than reacting to crime where it is most visible, targeting key player neighborhoods

addresses its root causes, amplifying the impact of enforcement efforts and maximizing public

safety benefits.

Beyond immediate crime reduction, this network-based approach challenges conventional

policing paradigms. While hot spot methods effectively suppress crime in specific locations,

they may overlook broader structural dynamics that sustain crime across urban areas. By

accounting for spatial dependencies, reallocating resources to key player neighborhoods gen-

erates wider spillover effects, creating more durable and systemic reductions in crime.

These findings provide a strong policy insight: optimizing police deployment through a

network-based approach not only enhances cost-effectiveness but also strengthens the long-

term resilience of urban crime prevention strategies. This perspective offers a more holistic

framework for rethinking crime control in complex urban environments, aligning enforcement

strategies with the underlying structure of criminal activity.
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Online Appendix

A Additional Figures and Tables

A.1 Additional Maps

Figure A1: LSOAs in London

The figure represents the 4,835 neighborhoods in London. The thick lines represent the London Boroughs.
Features of 2011 Census neighborhoods are from https://geoportal.statistics.gov.uk.
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Figure A2: Network: Instrumental Variable

The figure represents a selected neighborhood (shown in darker green), chosen to provide a graphical il-
lustration of the network. The medium green areas represent the first-order (“distance-one”) network,
consisting of neighborhoods whose centroids fall within an 800-meter Euclidean distance from the cen-
troid of the selected neighborhood. The lighter green areas represent the second-order (“distance-two”)
network, consisting of neighborhoods whose centroids fall within an 800-meter Euclidean distance from
the centroids of the first-order network. LSOA boundaries are from the 2011 Census shapefiles (https:
//geoportal.statistics.gov.uk).
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A.2 Temporal Stability of Our Area Measures

Figure A3: Stability of Key Players over Time
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The figure shows the number of years each neighborhood is classified as a key player from 2013 to 2019. It
represents only the 500 key players for each year.

Figure A4: Share of Hot Spots that are Key Players
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The figure illustrates the yearly share of the 500 hot spots identified as key players, separately by property
and violent crime.
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A.3 Additional Key Player Output

Figure A5: Key Players vs Hot Spots – Distribution of Crime
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Notes. The graph represents property crime in key-player-only and hot-spot-only neighborhoods. The
vertical line represents the average crime (over time) across all 4,835 neighborhoods in London.

Figure A6: Observed and Predicted Crime
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The X-axis represents observed property crime (averages over time). The Y-axis represents the intercentrality

measure k̃i for property crime, as defined in Equation 4 (averages over time). The 45-degree line indicates
where observed crime and the intercentrality measure coincide. The circles represent observations correspond-
ing to the 500 key players: black circles denote key-player-only neighborhoods, while gold circles indicate
neighborhoods that are both key players and hot spots.
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Figure A7: Comparing Key Player Policy with Random Allocation Policy
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Notes. The Y-axis represents the cumulative reduction in crime for property crime (left panel) and

violent crime (right panel), measured as Dk =
∑500

i=1 k̃i/
∑4835

i=1 k̃i for the key player policy and as

Dr =
∑500

i=1 k̃i/
∑
i = 14835k̃i for the random allocation policy, where k̃i represents the intercentrality

measure (average over time) calculated according to the formula reported in the text. The X-axis represents
areas ranked in terms of intercentrality measure (for the Dk graph) and ranked in a random order (for the
Dr graph).

Figure A8: Impact on Crime Reduction (all neighborhoods)

Property Crime

0
20

40
60

80
10

0
%

 C
rim

e 
R

ed
uc

tio
n

0 1000 2000 3000 4000 5000
 

Hot Spots Key Players

Violent Crime

0
20

40
60

80
10

0
%

 C
rim

e 
R

ed
uc

tio
n

0 1000 2000 3000 4000 5000
 

Hot Spots Key Players

Notes. The Y-axis represents the cumulative reduction in crime for property crime (left panel) and

violent crime (right panel), measured as Dk =
∑500

i=1 k̃i/
∑4835

i=1 k̃i for the key player policy and as

Dy =
∑500

i=1 k̃i/
∑
i = 14835k̃i for the hot spot policy, where k̃i represents the intercentrality measure

(average over time) calculated according to the formula reported in the text. The X-axis represents areas
ranked in terms of intercentrality measure (for the Dk graph) and in terms of observed crime (for the Dy

graph).
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A.4 Mapping Intercentrality

Figure A9: Spatial Variabilty of Intercentrality: Central London

Notes. The figure shows the section of inner London where the key players in property crime are
concentrated. Neighborhoods are classified by quintiles of k̃i. Thicker outlines indicate key-player-only
neighborhoods. Dashed lines represent London Boroughs.
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Figure A10: Reported Crime Data vs Accused Data

Notes. The graph represents the average number of property crimes in each neighborhood from both
reported crime (X-axis) and individual-level accused data (Y-axis) for the period 2015-2019, with a regression
line fitted across the points.
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A.5 Full Area Characterization

Table A1: Characteristing Neighborhoods Based on Key-Player/Hot-spot Classification

(1) (2) (3) (4)

Key-Player-
Only

Neighbor-
hoods

Hot-Spot-
Only

Neighbor-
hoods

Both KP
and HS

Neither KP
Nor HS

Resident-Based Measures

%Part of Co-offending Network 17.9 19.9 19.2 21.1
Number Offenders per Crime 1.25 1.31 1.28 1.32
Number Offenders per Crime | Multiple Offenders 2.42 2.53 2.44 2.50
Minimum Distance Residence to Co-Offender Residence 4.19 6.19 5.02 5.60
Mean Distance Residence to Co-Offender Residence 5.51 7.13 6.05 6.98

%Commit Crime Outside Home Neighborhood 88.8 84.5 83.8 87.9
Crime Commute Distance (km) 3.83 4.86 3.92 4.96

Crimes by Residents 12.08 11.68 13.22 8.19

Offense-Based Measures
Crime Commute Distance (km) 3.64 5.01 5.86 4.29

Crimes Committed in Area 9.28 18.35 37.35 6.05

Combined Measures
Deprivation Percentile Rank Gap: Offense-Residence –9.5 –6.7 –8.2 –5.2

Ratio of Crimes Committed in Area
to Number of Crimes by Residents 0.769 1.571 2.825 0.739

Neighborhood-Based Attributes

Percentile Rank: Deprivation 65.6 54.0 62.0 48.3

%Social Housing 33.7 22.7 29.0 22.7
%Private Rented Housing 31.9 30.4 37.8 22.4
%Homeowner 30.8 43.6 29.3 52.5

%Routine Occupation 7.0 7.9 6.4 7.5
%Not in Labor Force 10.1 8.8 8.6 8.1
%Never Worked 7.8 6.7 6.5 6.1
%Long-Term Unemployed 2.3 2.1 2.1 2.0

%Non-White 44.0 42.6 41.9 38.8

Spatial Aspects of the Neighborhood

%Area Coverage: Green Space or Parks 7.6 12.8 9.1 12.5
%Railway or Metro Station Located in Area 13.0 31.8 37.3 8.1
Number of Bus Stops 3.2 7.9 7.8 3.7

Population Density 160.7 62.6 104.9 94.0
Distance to Center of London (km) 6.5 12.8 7.2 13.0

Notes: Neighborhood measures are based on the hot-spot/key-player classification for property crime. There are 500 hot-
spot-only and 500 key-player-only neighborhoods. The number of overlapping neighborhoods – that are both hot spots and
key player – is 346 (69%). The crime variables are the total number of crimes divided by the total number of neighborhoods,
further divided by five – the number of years of data. As such, these crime outcomes are annualized crime rates per area. Crime
variables are based on property crime only. The data covers the period 1 January 2015-31 December 2019.

50



A.6 Additional Evidence on Offender Mobility

Key-player-only neighborhoods and hot-spot-only neighborhoods demonstrate striking dif-

ferences in offender mobility and crime patterns. Table 5 shows that offenders from key-

player-only neighborhoods are more likely to commit crimes outside their home neighbor-

hood (88.8%) than offenders from hot-spot-only neighborhoods (84.5%). However, Figures

A11 (upper and lower panels) highlight that offenders from key-player-only neighborhoods

travel shorter distances overall. Nearly half of all crimes by key-player-only offenders oc-

cur within a 2-kilometer radius of their residence. In contrast, offenders from hot-spot-only

neighborhoods exhibit a broader range of travel, as shown by their cumulative distribution,

which is less steep and extends further beyond 2 kilometers.

At the same time, offenders from hot-spot-only neighborhoods commit a greater share

of crimes very close to home. Nearly 25% of all crimes committed by offenders from hot-

spot-only neighborhoods occur within a 500-meter radius, compared to a smaller fraction for

offenders from key-player-only neighborhoods. Crime concentration further differentiates the

two types of neighborhoods. Table 5 reveals that the average number of crimes within key-

player-only neighborhoods is just 9.28, compared to 18.35 in hot-spot-only neighborhoods.

This difference is striking and aligns with the idea that key-player-only neighborhoods “hide

in plain sight”, attracting less policing attention than hot-spot-only neighborhoods, which are

often the focus of enforcement efforts. This is clearly illustrated in Figure A5 in the Appendix,

which was constructed using the same data as in the main analysis. The figure shows that

key-player-only neighborhoods predominantly consist of neighborhoods with average levels

of crime.
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Figure A11: Residence to Offense Location Distance for Property Crime

(a) Crime Commute Distance

Key Player Residents

(b) Crime Commute Distance

Hot Spot Residents

(c) Cumulative Crime Commute Distances

Notes: The top panels display the frequency distribution of distances between the accused offender’s address and the offense
location for property crimes, separately for key-player-only neighborhoods (left panel) and hot-spot-only neighborhoods (right
panel). Distances greater than 8 kilometers are excluded from the representation. The bottom panel illustrates the cumu-
lative density function based on the distributions shown in the top panels. The black curve corresponds to key-player-only
neighborhoods, while the blue curve corresponds to hot-spot-only neighborhoods.
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A.7 Additional Regression Results

Table A2: Spatial Estimates of Crime – Cross-
Sectional, all years

Property Crime Violent Crime

ML GS2SLS ML GS2SLS

2013 .058*** .069*** .040*** .054***

(.001) (.011) (.003) (.012)

2013 .058*** .069*** .040*** .054***

(.001) (.011) (.003) (.012)

2014 .052*** .076*** .037*** .055***

(.001) (.011) (.003) (.013)

2015 .058*** .074*** .039*** .059***

(.001) (.011) (.003) (.013)

2016 .058*** .071*** .041*** .054***

(.001) (.011) (.002) (.012)

2017 .059*** .065*** .041*** .066***

(.001) (.010) (.002) (.013)

2018 .059*** .065*** .037*** .055***

(.001) (.013) (.003) (.013)

2019 .059*** .062*** .036*** .055***

(.001) (.015) (.003) (.014)

Notes. Standard errors in parentheses. Estimates are obtained using maximum likelihood (ML) and Gener-
alized Spatial Two-Stage Least Squares (GS2SLS). The dependent variable is the number of crimes occurring
in a LSOA in each year. Estimates refer to the coefficient of the spatial lag G × N. Crimes. All regressions are
estimated with the Spatial Durbin Model used in Table 2. The Pseudo-R2 refers to the within R2. ∗ p < .10;
∗∗ p < .05; ∗∗∗ p < .01.
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Table A3: Spatial Estimates of Crime – Baseline

All Drugs

G × N. Crimes (ρ̂) .044*** .044*** .035*** .036***

(.005) (.005) (.003) (.003)

Population Size .040** .041** –.001 –.001

(.017) (.017) (.004) (.004)

N. Unemployed .039 .016 .038** .044***

(.119) (.112) (.015) (.014)

National Living Wage –.063 –.062 .004 .004

(.065) (.065) (.007) (.007)

Population Size .003 .000

(.003) (.000)

N. Unemployed –.017 .006**

(.018) (.003)

National Living Wage –.001 .003

(.020) (.003)

Model specification SDM SAR SDM SAR

Pseudo-R2 0.007 0.004 0.004 0.003

N 33,845 33,845 33,845 33,845

Notes. Standard errors in parentheses clustered at the LSOA level. Estimates are obtained using maximum
likelihood. SAR = Spatial Autoregressive Model; SDM = Spatial Durbin Model The dependent variable is
the number of crimes occurring in a LSOA in each year. G × N. Crimes is the spatial lag of the dependent
variable. For the definition of G see subsection 3.1. Definitions of the remaining variables and the data sources
are provided in section 2. The Pseudo-R2 refers to the within R2. ∗ p < .10; ∗∗ p < .05; ∗∗∗ p < .01.
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