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Abstract

With a dependent variable in logs, the difference-in-differences (DD) term does

not capture the outcome difference between treated and untreated groups over time.

Rather it reflects an approximation of the proportional difference in growth rates

across groups. As I show with both simulations and three published case studies,

if the baseline outcome distributions are sufficiently different across groups, the

DD parameter for a log-specification can be different in sign to that of a levels-

specification. I provide a condition, based on (i) the aggregate time effect, and

(ii) the difference in relative baseline outcome means, for when the sign-switch will

occur.
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1 Introduction

Difference-in-differences (DD) is almost certainly the most popular quasi-experimental research

design currently used in a broad range of empirical settings. Its use extends beyond Economics

into Political Science, Social Medicine and other fields. The seeming simplicity of the design

has, at least until recently, played a large role in its popularity. A recent literature documenting

underlying issues with difference-in-differences, particularly in the case of staggered roll-out of

treatment implementation (Goodman-Bacon, 2021), has somewhat shattered the illusion of the

simplicity of this research design.

In this paper, I highlight an additional complication that the applied researcher faces when

operationalizing a DD design – the choice of functional form, and the subsequent consequences

of this choice. As Ciani and Fisher (2019) note in related work, researchers may apply the

log transformation, not because they believe the true underlying data generating process is

multiplicative rather than additive, but rather due to concerns of skewness, or because the log

transformation enables one to interpret the effect of controls in percentage terms, e.g., “I take

the logarithm of the [outcome variable] to deal with this skewed distribution and to allow for

an intuitive interpretation of results in percentage terms” (Fouka, 2019, p. 124).1

In order to set the scene for this work, I survey all papers published in The Quarterly Journal

of Economics (QJE) from 2018 to 2022. I present summary information on these articles in

Table B1. Of the 49 QJE articles published in this five year span that use a DD design, almost

all of these (46 articles) consider at least one continuous outcome variable. Roughly two thirds

of these 46 articles (30 articles or 65%) impose a log transformation on at least one continuous

variable, and three more impose an inverse hyperbolic sine transformation2, which will lead to

related issues.3 That over 65% of all DD papers in one of the top Economics journals use at least

one log-dependent variable specification underscores the importance of better understanding

what we recover using a DD design with a log transformed dependent variable.

I start by outlining the key differences between a DD model with level- and log-dependent

variables. A levels specification implies an additive model for potential outcomes. In this

case the common trend is additive – outcomes increase by a given level over time – as is the

treatment effect. In the level-dependent variables case, the DD parameter returns the difference

between the treated and untreated groups in changes in the outcome variable over time. In

contrast, a log-specification implies a multiplicative model for potential outcomes, which in turn

implies a multiplicative common trend – outcomes grow by a given proportion over time –

and a multiplicative treatment effect. Accordingly, when one uses a log transformation of the

dependent variable, the DD parameter approximates the proportional difference in growth rates

between treated and untreated groups.4

1Other papers are more explicit about the reasons and/or consequences of the choice between level-
and log-specifications of the outcome variable when using difference-in-differences designs (Finkelstein,
2007; Powell and Leider, 2020; Park and Powell, 2021).

2See Bellemare and Wichman (2020) for an in-depth consideration of the implications of the inverse
hyperbolic sine (IHS) transformation.

3The inverse hyperbolic sine of a random variable y, arsinh(y) = ln(y+
√
y2 + 1) ≈ ln(2y) for large y.

4Denoting the DD parameter for the log specification as β4, the transformation exp(β4)− 1 yields the
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I then shift my attention to the primary aim of this paper: to explicate the consequences

of the functional form assumption when baseline means of group outcomes differ substantively.

These consequences can be stark. For a given aggregate time effect, I show that with a sufficiently

large difference between group outcome baselines means, it is possible for the level- and log-

specifications of a DD design to yield DD parameter estimates of different signs. The choice of

functional form in the DD context is by no means innocuous: one may conclude that a policy

or intervention raised outcomes for the treatment group using one functional form, but may

conclude the precise opposite using a different functional form, even with the same data, the

same sample period, and the same control variables. To my knowledge, this is the first paper to

methodically document this disparity. Given the wide use of DD designs for policy evaluation in

areas that can give rise to such large differences in baseline outcome distributions – e.g., gender

gaps in earnings, race gaps in the length of incarceration spells, house prices across regions or

states, or school test scores across different education regimes – this point is likely to be of broad

significance to applied researchers.

I provide a condition – based on (i) the common time effect experienced by both groups,

and (ii) the difference in relative baseline outcome means – as to when we should expect a sign

switch for the log-dependent variable case. This can straightforwardly be expressed in terms

of the parameters of an additive DD model. Using simulations, I provide evidence of the sign

disparity in estimated DD coefficients and verify the condition I propose via simulation.5

Next, I turn to three empirical case studies, all of which have been published in the QJE since

2020, and all of which feature a key regression specification involving a log-dependent variable

and either a DD or event study design. Based on my subjective reading of these papers, the

internally consistent underlying model for all three papers is an additive model, which implies

the core specification should be in levels, not logs.

I note that there are two potential errors that researchers may make when specifying a

log-dependent variable model in conjunction with a DD design. The first is that estimates

based on a logarithmic specification can be seriously biased if estimated by OLS, as documented

in the seminal work by Silva and Tenreyro (2006). I refer to this as Jensen bias, as due to

Jensen’s inequality, when one log-linearizes a multiplicative model, heteroskedasticity can lead

to parameter bias, not just inefficiency (Silva and Tenreyro, 2006).

The second error, which I refer to as a targeting error, is that in many cases, researchers are

interested in targeting an additive model – they care about the levels of the outcome, not the

growth rate of the outcome – yet apply the log transformation to their dependent variable. This

transformation implies a multiplicative model. This functional form assumption means that the

DD parameter no longer returns a difference between treatment groups in differences in outcomes

over time due to a policy, but rather a relative difference in growth rates of the outcome. Where

baseline outcomes means across treatment are sufficiently different, this targeting error can lead

to estimating a policy effect of a different sign to what one would estimate from an additive

model.

precise proportional difference in growth rates.
5I focus my attention on the non-staggered timing, binary treatment case for this paper.
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Based on these insights, I replicate the baseline log-dependent variable specifications of the

three cases studies, and then compare these estimates to DD estimates based on both (i) a

levels specification estimated by Poisson Pseudo Maximum Likelihood (PPML) and (ii) a levels

specification estimated by OLS. The first extension assumes an underling multiplicative model,

but accounts for Jensen Bias. The second extension assumes an underlying additive model, and

thereby estimates a difference over time in differences of outcomes across treatment groups, not

a proportional difference in growth rates.6

Two of the articles that I consider as empirical case studies feature settings with disparate

baseline outcome means. For these articles, I document a fragility in the findings one takes

from estimating a DD specification with a log-dependent variable. This is primarily due to

targeting error. The fragility of estimates that I document ranges from certain key estimates

losing statistical significance at conventional levels, to documenting sign-switches in key DD

estimates, to documenting completely different patterns of parameter estimates when addressing

both Jensen bias and targeting error. Such findings underscore the empirical relevance of the

issue at the core of this work.

The second key finding confirms the proposition I outline below, and highlights that re-

searchers will only be confronted with the possibility of a sign-switch in DD estimates between

an additive and a multiplicative model when baseline outcome means are sufficiently different.

One of the case studies I consider implements a matched-DD design using panel data on work-

ers, where the baseline outcomes are one of the variables targeted in the matching procedure.

In this case there is a large degree of congruence between the DD estimates from the log- and

level-dependent variable specifications.

The key conclusion I draw from both the simulation and empirical case study replication

exercises is that ambivalence over the underlying model for the outcome variable is likely the

cause of many researcher errors when using a DD design. A natural principle arises from the

findings of this work: the applied researcher will ideally decide first on how to model parallel

trends in potential outcomes in the setting one faces – in levels (i.e., an additive model) or in

percentage terms (a multiplicative model). Finkelstein (2007) makes precisely such a reasoning

when arguing for a multiplicative model: “a level specification would constrain the outcomes to

grow by the same absolute amount each year, which would be inappropriate given the consider-

able variation in size across hospitals.” (Finkelstein, 2007, p. 9). If the researcher decides on an

additive model, then the outcome variable should be specified in levels. If the researcher decides

on a multiplicative model, then in order to avoid Jensen bias, it is advisable to use outcome

in levels, but estimate the empirical model using PPML. In both cases, a a DD design using a

log-dependent variable and estimated by OLS is the inferior estimation strategy.

This principle stands in opposition to what often occurs in practice, where one first empir-

ically examines whether or not parallel trends hold in logs or levels, and then proceeds with

this functional form specification, without a clear, a priori consideration of how best to model

parallel trends in potential outcomes in the specific setting. Starting by empirically checking

the parallel trend for various functional forms is akin to putting the cart before the horse.

6I detail two further empirical examples of my own in the Appendix.
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This paper contributes to the difference-in-differences literature by making clear the conse-

quences of functional form assumptions in DD designs, particularly when working with groups

with large baseline differences in outcome distributions. This builds on work by both Meyer

(1995) and Kahn-Lang and Lang (2020) who noted that functional form assumptions would

matter in such cases. This work also relates to the recent work by Roth and Sant’Anna (2023),

who set out the conditions under which the parallel trend assumption is insensitive to functional

form.

The secondary contribution of this paper is to serve as an episodic reminder of the impact

of Jensen bias when estimating a log-linearized multiplicative model. In two of the three case

studies I consider below, Jensen bias has a non-negligible impact on estimated coefficients. The

initial warning regarding Jensen bias was made by Silva and Tenreyro (2006) in the context of

estimating gravity models, but the issue extends far beyond empirical trade papers.

The remainder of the paper is organized as follows. Section 2 provides an overview of the

DD model, makes precise what the level- and log-specifications are estimating and provides a

condition for when we will find a sign-switch between the two specifications. Section 3 provides

simulation evidence to both verify the sign-switch condition, and to highlight cases that generate

disparate coefficient estimates across specifications. Section 4 presents three empirical case

studies and Section 5 concludes.

2 The DD Model

2.1 The Nature of the Problem

Individual i can belong to treatment group (Di = 1) or untreated comparison group (Di = 0).

We observe individuals in two periods – Tt = 0 and Tt = 1. Those in treatment group receive

treatment in period 1. Using a potential outcomes framework, we can write down the realized

outcome as Yit = (1−Di)Yit(0) + DiYit(1), where Yit(0) and Yit(1) are the potential outcomes

for individual i in absence of treatment and upon receipt of treatment respectively. We write

the DD estimand as:

αATT = {E[Yit | Di = 1, Tt = 1]− E[Yit | Di = 1, Tt = 0]]

− [E[Yit | Di = 0, Tt = 1]− E[Yit | Di = 0, Tt = 0]} (1)

The sample analog of (1) is the DD estimator

α̂DD =
[
Y T1 − Y T0

]
−
[
Y C1 − Y C0

]
, (2)

where the subscript T and C refer to treatment and control groups respectively. The subscripts

0 and 1 respectively refer to the pre- (Tt = 0) and post-policy (Tt = 1) periods. A simple

regression specification we can use to estimate the ATT parameter is:

Yit = α1 + α2Treati + α3Postt + α4(Treati × Postt) + εit , (3)
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where Treati is a treatment indicator, Postt the post-period indicator, and α4 is the parameter

of interest. Writing down an analogous specification with a log-transformed dependent variable

of the form:

lnYit = β1 + β2Treati + β3Postt + β4(Treati × Postt) + µit , (4)

implies an underlying model for Yit that is multiplicative rather than additive:

Yit = exp(β1 + β2Treati + β3Postt + β4(Treati × Postt))ηit , (5)

where µit = ln ηit. The assumption of an underlying multiplicative model means that one is

assuming that parallel trends hold multiplicatively, not additively. Put differently, in absence

of the treatment, the outcome for both treatment and control groups would grow by the same

proportion. This is very different to the analog for an additive model, where in absence of the

treatment, both groups increase in levels by the same amount (Ciani and Fisher, 2019).

As noted by Mullahy (1999), we can write an expression for the exponentiated DD parameter,

based on the multiplicative model, as:

exp(β4) =

E[Yit | Di = 1, Tt = 1]

E[Yit | Di = 1, Tt = 0]

E[Yit | Di = 0, Tt = 1]

E[Yit | Di = 0, Tt = 0]

=
gT
gC

, (6)

where gC and gT are the respective growth rates in the outcome for control and treated groups.

Recalling that ln(1 + z) ≈ z for small values of z, and returning to Equation (4), we see that

the DD parameter we estimate (β4) with a log-dependent variable can be expressed as:

β4 ≈ exp(β4)− 1 =

E[Yit | Di = 1, Tt = 1]

E[Yit | Di = 1, Tt = 0]
−
E[Yit | Di = 0, Tt = 1]

E[Yit | Di = 0, Tt = 0]

E[Yit | Di = 0, Tt = 1]

E[Yit | Di = 0, Tt = 0]

=
gT − gC
gC

. (7)

Equation (7) makes clear that when we estimate a DD specification with a log-dependent variable

(as in Equation (4)), we are estimating an approximation of the proportional difference in growth

rates of the outcome between the treated and untreated groups over the two periods. This is

very different from what we measure with a level dependent variable – the difference between

groups in changes over time.

In Proposition 1 below, I outline the conditions under which we will find a sign switch using

a level and log specification.

Proposition 1. For a given (non-zero) aggregate time effect (α3 6= 0), if outcomes means at

baseline are sufficiently different in relative terms, the functional form decision of specifying a

level- or log-dependent variable can yield a sign difference for the DD parameter. More specifi-

cally:
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when 0 < |∆T −∆C | <

∣∣∣∣∣∣∆C

(E[YT0]− E[YC0])

E[YC0]

∣∣∣∣∣∣ , we will have sign(α4) 6= sign(β4).

This condition may alternatively be expressed in terms of the parameters of the additive DD

model as:

when |α4| <

∣∣∣∣∣∣α3

α2

α1

∣∣∣∣∣∣ , we will have sign(α4) 6= sign(β4).

Proof in Appendix A.

The Proposition above uses the notation E[YC0] = E[Yit | Di = 0, Tt = 0], E[YT0] =

E[Yit | Di = 1, Tt = 0], ∆C = E[Yit | Di = 0, Tt = 1] − E[Yit | Di = 0, Tt = 0], and

∆T = E[Yit | Di = 1, Tt = 1] − E[Yit | Di = 1, Tt = 0]. In the simulation approach I detail in

Section 3, I verify Proposition 1.

2.1.1 The Parallel Trends Assumption

The key identifying assumption for the DD estimator to return the ATT is the parallel trends

assumption. In recent work, Roth and Sant’Anna (2023) set out the conditions under which the

parallel trend is insensitive to functional form. These conditions – either random assignment

of treatment, stationarity of the distribution of potential outcomes for the untreated setting,

Y (0), or a combination of these two cases – are considerably stricter than is typically assumed

by empirical researchers using DD approaches. When such conditions are not met, one must

choose, and consequently justify, a functional form for the outcome variable – a parallel trend

in levels obviates a parallel trend also holding in logs, and vice versa. This point was made by

Meyer (1995), and has since been reiterated by several authors, including Angrist and Pischke

(2009) and Kahn-Lang and Lang (2020).

In one sense, these findings regarding functional form and the parallel trend assumption

limit the scope of cases that may benefit from the insights of this paper. If (i) a parallel trend in

levels precludes a parallel trend in logs and (ii) empirical researchers typically assess the validity

of using DD methods by some form of pre-trend inspection and/or testing7, then does the the

singular aim of this paper – to call attention to the possibility of a sign switch in DD estimates

based on functional form assumptions – carry any weight? I argue that it does, both in cases

that satisfy the conditions set out by Roth and Sant’Anna (2023), or in cases where limited pre-

policy data limits the statistical power to detect divergent pre-trends. Having a clearer sense of

when such issues may arise will hopefully be of use to applied researchers.

2.2 Two Solutions

The underlying source of the sign-switch issue highlighted above is a disparity in baseline out-

come means across treatment groups. If one believes the underlying model is additive but wants

the convenience of being able to interpret estimates in proportional terms, then the simplest

7See Roth (2022) for a discussion on the pitfalls of such pre-testing
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solution to this issue is to estimate a DD model with a dependent variable in levels, and then

express the DD parameter relative to the baseline mean for the control group.

For the researcher who is both wedded to the use of the log transformation – possibly due to

skewness concerns – and ambivalent towards the underlying model they wish to assume for their

outcome variable, our understanding of the source of the issue presents a potential solution: to

ensure that there is no disparity in baseline outcome means. This can be done by matching

methods, e.g., see the approach taken by Aneja and Xu (2022), which I discuss in Section 4.3.

This could also be done by mechanically recentering the outcome distribution of the treated

group in order to align baseline outcome means prior to applying the log transformation. I

describe this approach in Appendix C.1. I am not an especial fan of this approach – I find it

fiddly and inelegant, but I present it here for completeness.

3 Simulation Results

In this section, I provide simulation results to show that, using an additive and multiplicative

model, one may estimate an ATT that differs not just in magnitude, but in sign. I take the

additive model as the data generating process (DGP) in this case, and compare level- and log-

dependent variable based DD specifications. The DGP is based on Equation (3), with different

simulation specifications using different parameters values for α1, α2, α3, and α4.

The simulation results below illustrate the key insight of this paper –because the DD pa-

rameter from a level- and log-dependent variable specification respectively reflect a difference

in differences in levels and a proportional difference in growth rates, holding fixed the time ef-

fect, one just needs to shift the distribution of outcomes for one of the groups to drive a wedge

between the resulting parameter estimates.

Table 1 presents the first set of simulation results. All DD estimates for the level-dependent

variables are positive, whereas the estimates for the log-dependent variable specifications are

either precisely zero, or negative. For log specifications, I present both β4, and exp(β4) − 1, of

which the latter equals the proportional difference in growth rates (see Equation (7)). At the

base of the table, I present the cell means for the outcome variable across the four DD groups –

thus one can easily see how the parameters are generated – as well as the proportional growth

rates that I calculate from these cell means.

The key point of this table is to show that one can generate a positive DD estimate from

a levels specification and, by merely shifting the baseline outcome distribution of the untreated

group, also generate a precise zero or a negative DD estimate from a log specification. In

Table C1 I present a complementary set of simulation results, where I fix the level specification

to yield a DD estimate that is precisely zero (once again, the cells sample averages at the base

of the table provide the key insight into how this is operationalized) for a levels specification,

but which yields either a negative or positive DD estimate from a log specification.
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Table 1: Simulating a Postive Levels DD Effect That Yields a Zero or Negative Log Effect

Zero Log Effect Negative Log Effect

(1) (2) (3) (4) (5)

a.) Level-Dependent Variable:
DD Estimate [α̂4] 0.40*** 1.00*** 0.40*** 1.00*** 0.80***

(0.00) (0.00) (0.00) (0.00) (0.00)
Recenter

DD Estimate [α̂RC4 ] 0.40*** 1.00*** 0.40*** 1.00*** 0.80***
(0.00) (0.00) (0.00) (0.00) (0.00)

b.) Log-Dependent Variable:

DD Estimate [β̂4] –0.000 –0.000 –0.000 –0.043*** –0.017***
(0.000) (0.000) (0.000) (0.000) (0.001)

exp(β̂4)–1 –0.000 –0.000 –0.000 –0.042*** –0.017***
(0.000) (0.000) (0.000) (0.000) (0.001)

Recenter

exp(β̂RC4 )–1 0.033*** 0.067*** 0.018*** 0.083*** 0.133***
(0.000) (0.000) (0.000) (0.000) (0.001)

Recenter-Then-Rescale

(exp(β̂RC4 )–1)×(Y C1/Y C0) 0.040*** 0.100*** 0.020*** 0.100*** 0.160***
(0.000) (0.000) (0.000) (0.000) (0.001)

α̂4/ Y C0 0.040 0.100 0.020 0.100 0.160

(gT − gC)/gC –0.000 0.000 –0.000 –0.042 –0.017

Y C0 10.0 10.0 20.0 10.0 5.0

Y C1 12.0 15.0 22.0 12.0 6.0

Y T0 12.0 12.0 24.0 20.0 10.0

Y T1 14.4 18.0 26.4 23.0 11.8

Notes: Results based on 1000 simulation runs. *** denotes significance at 1%, ** at 5%, and * at 10%. DD estimates for
both a level- and log-dependent variable are presented in each column. The tables display the mean and (in parentheses)
bootrapped standard error of the DD estimates across all simulation runs. At the base of the table, the four elements of
the DD are presented for reference. The sample size is 40000 in each simulation. Proportion treated and proportion in the
post period are .5 and .5 respectively. The standard deviation of the error term is .2 in all simulations.

The secondary point of the table is to show that the RTR approach, clunky as it is, is a viable

method to produce treatment effect estimates from a log-dependent variable specification that

coincide with the analogous treatment effects from a level-dependent variable specification (as a

proportion of the control baseline outcome mean). To see this note that for all five columns, the

exponentiated RTR estimate equals the proportional treatment effect from the additive model

(α̂4/ Y C0).

In Figure 1, I present DD estimates from both a levels- and log-based specification for

two separate simulation experiments.8 Based on the parameters I choose, the DD coefficient

estimate is a constant equal to 10 for the levels specification. Keeping all parameters fixed

except for either the relative baseline outcome difference (Figure 1a) or the aggregate time effect

(Figure 1b), I verify Proposition 1. The figures make clear two key points. First, keeping the

levels-based DD estimate fixed at a constant value and altering either the relative difference

in baseline means (α2/α1) or the aggregate time effect (α3), it is possible to generate either a

negative or a positive DD estimate for the log-dependent variable specification. Second, the sign

switch occurs at precisely the point stated in Proposition 1 – when α4 = α3α2/α1.

The condition provided in Proposition 1 indicates that we require both a non-zero aggregate

time effect (α3 6= 0) and a difference in baseline outcome means (α2 6= 0) to find a sign switch

8I present levels specifications using the left-hand y-axis and a black line. I present log specifications
using the right-hand y-axis and orange lines.
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Figure 1: The Sign Switch Occurs When α4 = α3

α2

α1

(a) Varying Baseline Outcome Differences (b) Varying the Aggregate Time Effect

Notes: The underlying DGP that creates both graphs is an additive DD model specification, thus taking the form of

Equation (3). In all cases, E[εit | Di, Tt] = 0 and σε = .2. In the left-hand graph, I set the following as fixed: YC0 = 50,

YT1 − YT0 = 30, YC1 − YC0 = 20. What varies is the relative baseline difference: (YT0 − YC0)/YC0 = α2/α1. Once the

relative baseline difference is fixed, this yields a specific value of YT0 for the simulation exercise. In the right-hand graph, I

set the following as fixed: YC0 = 50, YT0 = 60, (YT1 − YT0) = (YC1 − YC0) + 10. What varies is the aggregate time effect,

(YC1 − YC0). Once the aggregate time effect is fixed, this yields a specific value for both YC1 and YT1 for the simulation

exercise. For each increment of relative baseline difference and aggregate time effect values respectively, 10,000 simulations

are conducted. In both cases, the specification leads to a constant (levels) DD effect of 10 units, which is why the black

line is horizontal. The sample size is 40,000 in each simulation. Proportion treated and proportion in the post period are

.5 and .5 respectively.

across level- and log-specifications. In Figure C1 is to show that this is indeed the case. The

underlying DGPs are identical to those underlying Figure 1, except for the key difference that in

Figure C1a I set the aggregate time effect to zero, and in Figure C1b I set the baseline outcome

mean wedge to zero. In both cases, the log-based DD estimate (shown in orange) never crosses

the zero line i.e., there is no sign switch.

4 Empirical Case Studies

There are two potential errors that researchers may make when specifying a log-dependent

variable model in conjunction with a DD design. The first is that since a logarithmic specification

implies an underlying multiplicative model, and as documented in the seminal work by Silva

and Tenreyro (2006), such estimates can be seriously biased if estimated by OLS. I refer to this

as Jensen bias, as due to Jensen’s inequality, when one log-linearizes a multiplicative model

(e.g., Equation (5)) heteroskedasticity can lead to parameter bias, not just inefficiency (Silva

and Tenreyro, 2006).

The second error, which I refer to as a targeting error, is that in many cases, researchers are
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interested in targeting an additive model – they care about the levels of the outcome, not the

growth rate of the outcome – yet apply the log transformation to their dependent variable. This

transformation implies a multiplicative model for potential outcomes. Where baseline outcomes

means across treatment are sufficiently different, this targeting error can lead to estimating a

policy effect of a different sign to what one would estimate from an additive model.

In this section, I present three empirical case studies based on articles published in the QJE

since 2020, and all of which feature a key regression specification involving a log-dependent

variable and either a DD or event study design. Based on my subjective reading of these

papers, the internally consistent underlying model for all three papers is an additive model,

which implies the core specification should be in levels, not logs. I selected the first two papers

– Derenoncourt and Montialoux (2021) and Heblich et al. (2020) – as case studies based on

large wedges in baseline outcome means. I chose the final paper – Aneja and Xu (2022) – as

this paper employs a matched-DD model. The matching is based on coarsened exact matching

(CEM), where the authors explicitly target the pre-treatment outcome mean along with other

individual characteristics. Such targeting suggests that there should be minimal discrepancies

across log- and level-dependent variable specifications for this final case.

For all three case studies I replicate the initial results (log-dependent variable, multiplicative

model, estimated by OLS), and then provide two additional sets of results. First, to gauge the

importance of Jensen bias, I estimate a level-dependent variable specification by PPML, which

assumes a multiplicative model. I then estimate a level-dependent variable specification by OLS,

assuming an additive model. This final set of results enables me to speak to the importance of

targeting error.

4.1 Derenoncourt and Montialoux (2021)

Derenoncourt and Montialoux (2021) study the impact of a minimum wage expansion policy,

comparing industries newly covered by a minimum wage policy (1967) with those previously

treated (1938) as controls. The authors estimate a DD model of the form:

logwijst = α+

2∑
k=1

βkCovered 1967j × 1[t ∈ periodk] + δj + τt + X′ijstΓ + εijst , (8)

where wijst is the annual earnings for worker i in industry j, state s, and year t. The indicator

variables period1 and period2 respectively cover the years 1967-1972 and 1973-1980.9

In panel (a) of Table 2 I start by replicating the specifications that yield column 1, Table

I, and Table V.10 Based on the log-OLS specification, the authors conclude that the minimum

9The authors use CPS and BLS data. The replication evidence I provide here is based on the CPS
data.

10Note that the estimation sample I use has one observation fewer than the corresponding sample of
Derenoncourt and Montialoux (2021). Based on a top-coding procedure, there was an individual in 1961
with an annual earnings value of 107,571,072, whom I dropped.
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Table 2: Derenoncourt and Montialoux (2021) Replication

(1) (2) (3) (4) (5) (6) (7)

Baseline Robustness

[1] [2] [3]

Black and
White

Black White Black White Black White

(a) ln(Annual Earnings) – [Multiplicative Model] – OLS

Covered in 1967× .0658** .0953*** .0542** .0739*** .0515** .074** .0489**

1967–1972 [β̂a1 ] (.0249) (.0217) (.0234) (.0239) (.0232) (.0301) (.0226)

Covered in 1967× .0504 .078* .0361 .0492 .0332 .0428 .0352

1973–1980 [β̂a1 ] (.042) (.0371) (.0417) (.0391) (.0412) (.0429) (.0408)

(b) Annual Earnings – [Multiplicative Model] – PPML

Covered in 1967× .056*** .0966*** .0486** .0727*** .0465** .0686*** .0428**

1967–1972 [β̂b1] (.0205) (.0212) (.0202) (.0211) (.0199) (.0208) (.0188)

Covered in 1967× .0291 .0465 .0214 .0151 .0189 .00931 .0193

1973–1980 [β̂b1] (.0453) (.0311) (.0471) (.0355) (.0466) (.0371) (.0454)

(c) Annual Earnings – [Additive Model] – OLS

Covered in 1967× 563 1,503* 474 875 362 970* 217

1967–1972 [β̂c1] (707) (754) (708) (591) (688) (540) (650)

Covered in 1967× –1,444 –1,025 –1,529 –1,820* –1,641 –1,812* –1,565

1973–1980 [β̂c1] (1,499) (1,006) (1,640) (869) (1,617) (892) (1,608)

β̂c1/ Y C0 .0132 .0537* .0108 .0313 .00824 .0347* .00495
(.0166) (.0269) (.0161) (.0211) (.0157) (.0193) (.0148)

β̂c2/ Y C0 -.0339 -.0366 -.0349 -.065* -.0374 -.0647* -.0357
(.0351) (.0359) (.0374) (.031) (.0369) (.0319) (.0367)

Y C0 42,671 27,984 43,851 27,984 43,851 27,984 43,851

Y T0 29,932 20,179 31,626 20,179 31,626 20,179 31,626

Observations 407,822 37,770 370,052 37,770 370,052 36,895 370,052
State FE N N N Y Y N N
State×Year FE N N N N N Y Y

Notes: Data used: March CPS, 1962-1981. Sample weights are used throughout the analysis. I impose the same sample
restrictions as Derenoncourt and Montialoux (2021). *** denotes significance at 1%, ** at 5%, and * at 10%. Standard
errors are clustered at the industry level. Baseline control variables include: a polynomial of order 3 in experience, dummies
for: gender, years of schooling, working part-time, categories for weeks worked last year, hours worked last week, marital
status, occupation, and industry. A dummy for Black is also included in Column 1.

wage policy lead to a statistically significant and economically meaningful short-run increase in

earnings for those in treated industries, with Black workers experiencing a greater benefit. In

panel (b), I account for Jensen bias, estimating an analogous specification for earnings in levels

via PPML. The results are broadly to those from panel (a), hence I conclude that Jensen bias

is not a significant concern in this setting.

In panel (c), Table 2 I present the results from a levels-OLS specification. It is at this point

that it important to view the baseline outcome means, listed in the bottom panel of the table.

There is a sizeable disparity in the baseline outcome means, which when coupled with a log-

dependent variable can lead to sign differences in the treatment effect estimates from a level-

and log-based specification.11 The DD estimates from the levels-OLS specification, presented

in panel (c), paint a very different picture to those from the analogous log-based specification

in panel (a). The immediate short-run effects of the minimum wage policy are essentially null,

11The respective treatment-control ratios of baseline outcome means for the Black and white, Black,
and white samples is .70, .72, and .72.
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although there does appear to be a small benefit to Black workers that is marginally statistically

significant. The effect for Black workers is roughly half the size of the log-OLS estimate for the

baseline model, present in column 2 (.054 instead of .095). This effect is transient however – the

medium-term effects of the policy are negative in all seven sample-specification combinations,

although only statistically significant at conventional levels for the two robustness specifications

for Black workers (Columns 4 and 6).12 Comparing specifications in panels (a) and (c), one can

find evidence of the sign-switch that I discuss in Section 2.

4.2 Heblich et al. (2020)

I next consider the reduced form evidence from Heblich et al. (2020), specifically the results

underlying Figure V of the article. I note that this reduced form evidence is not the core of

the paper – rather it is used to motivate a structural model that allows the authors to trace

the consequences of falling commuting costs on changing land use patterns within London,

and the corresponding increase in size of the city. A key output from the authors’ model

is a counterfactual simulation of the impact of removing the London railway network, where

population in levels is considered. The authors present event study evidence from dynamic DD

and DDD specifications. The DD specification is:

lnRjt = αj +

τ=60∑
τ=−60

βτ (Sj × Ijt) + (µj ×Yeart) + dt + υjt , (9)

where Rjt is parish population, Sj an indicator if the parish has a railway station, and Ijt a

treatment year indicator.13 The DDD specification is

lnRjt = αj+
τ=60∑
τ=−60

βτ (Sj × Ijt) +
τ=30∑
τ=−30

γτ
(
Sj × Ijt × ICenter

j

)
+ (µj ×Yeart) + dt + υjt , (10)

where ICenter
j is an indicator for central London.

There is a sizeable disparity between never treated and ever treated parish population base-

line means, which for the period before the first railway station (1801-1831) are respectively 2,199

and 9,107. I provide details of the parish population by treatment timing groups in Figure C3.

I present three sets of results based on this article. In Figure 2a I replicate the results

presented in Figure V of Heblich et al. (2020), based on a log-OLS specification. This provides

extremely clear evidence of the impact on population growth of the arrival of a railway station

in the parish. Figure 2b presents estimates of a multiplicative model for parish population using

PPML, thereby circumventing the inherent Jensen bias present in a log-population specification.

The results from this, correctly estimated, multiplicative model do not provide evidence of a

12I provide further replication results in the Appendix, replicating Figure V and Figure VI from
Derenoncourt and Montialoux (2021) for both log-OLS and levels-OLS specifications in Figure C2.

13See pages 2080-2084 of Heblich et al. (2020) for further details.
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Figure 2: Heblich et al. (2020) Replication

(a) ln(Parish Population) – [Multiplicative Model] – OLS

(b) Parish Population – [Multiplicative Model] – PPML

(c) Parish Population – [Additive Model] – OLS

Notes: I use the same parish-by-decade panel data sample as Heblich et al. (2020). The coefficient plot displays DD

and DDD coefficients along with 95% confidence intervals. Standard errors are clustered at the borough level. Baseline

control variables include: parish fixed effects, parish-specific trends, and year fixed effects. The figures in the left-hand

column display the βτ coefficients from Equation (9). The figures in the central column display the βτ coefficients from

Equation (10). The figures in the right-hand column display the γτ coefficients from Equation (10). In figures in the central

and right-hand columns, the three different color-shape combinations represent three different definitinations of central

London. See the notes to Figure V of Heblich et al. (2020) for more details.

14



positive effect of the arrival of a railway station.14

Finally, in Figure 2c I present results from a levels-OLS series of specifications. Given the

authors target population in levels, not in growth rates, for their concluding counterfactual

simulation, I take the levels specification to be the internally valid specification. The levels-

OLS results suggest that the arrival of a railway station offset a negative deviation from local

trend, yet it is only after 60 years that one finds a statistically significant DD estimate for this

specification.

To conclude, if one maintains that a multiplicative model is correct and accounts for Jensen

bias alone (Figure 2b), or if one decides that the additive model is the correct model instead

(Figure 2c), one cannot replicate the pattern of event study parameter estimates documented

in Figure V of Heblich et al. (2020).

4.3 Aneja and Xu (2022)

Aneja and Xu (2022) study the consequences of the racial segregation of the civil service brought

in with the Woodrow Wilson presidency. I selected this study as I suspected ex-ante that there

would be no sign switches in the DD estimates when moving from a multiplicative to an additive

model. The reason for this is that the authors using a matching procedure that explicitly targets

the baseline outcome means. Without a disparity in baseline outcome means, there will be no

sign-switch, as I show in Proposition 1.

The authors estimate a DD specification of the form:

ln(wit) = β ×Blacki ×Wilsont + θi + τt + εit , (11)

where wit is annual earnings, Blacki is an indicator for Black civil servants, and Wilsont is

dummy for the period from 1913 onward.15 In Columns 2-4 of panel (a), Table 2 I replicate

the baseline earnings results from Aneja and Xu (2022). I include an unconditional regression

specification in Column 1, and I present additional evidence on the matched sample without

using the CEM weights (Columns 5-8), in order to investigate the consequences for parameter

estimates of re-introducing a baseline outcome disparity in this setting.

The purpose of the unconditional specification in Column 1 and Column 5 is that I can

compare the exponentiated log-OLS coefficients (exp(β̂1) − 1) to the proportional difference in

growth rates of earnings ((gT − gC)/gC), which I present in the lower panel of Table 3. In doing

so I can assess the extent of Jensen bias in this setting, as these two numbers should be equal.

14I do not think that it is the case that railway stations were placed in areas with declining populations.
Rather I think this reflects the fact that the authors specify a parish-specific trend in both their DD and
DDD models, hence we are observing a pattern of deviations from long-term local trends. To explore
this idea, I re-estimate all regression specifications, removing the parish-specific time trends. I present
the corresponding estimates in Figure C4, and document a greater concordance in patterns of estimates
across models in absence of parish-specific trends.

15See pages 924-926 of Aneja and Xu (2022) for more information on the matching procedure, and
pages 926-928 for more information on the regression specification.
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Table 3: Aneja and Xu (2022) Replication

Matched, CEM-weighted Matched, Unweighted

(1) (2) (3) (4) (5) (6) (7) (8)

(a) ln(Annual Salary) – [Multiplicative Model] – OLS

Black × -.0771*** -.0793*** -.0686*** -.0344*** -.0516*** -.054*** -.042*** -.00956

Wilson [β̂1] (.0124) (.0124) (.00882) (.00974) (.00918) (.00907) (.00625) (.00771)

exp(β̂1)–1 -.0742*** -.0763*** -.0663*** -.0338*** -.0503*** -.0526*** -.0411*** -.00952
(.0115) (.0114) (.00823) (.00941) (.00871) (.00859) (.00599) (.00764)

(b) Annual Salary – [Multiplicative Model] – PPML

Black × -.115*** -.118*** -.106** .0296 -.085** -.0884** -.0759* .0483

Wilson [β̂2] (.0445) (.0453) (.0458) (.0527) (.0384) (.039) (.0407) (.047)

exp(β̂2)–1 -.109*** -.112*** -.1** .03 -.0815** -.0846** -.0731* .0495
(.0397) (.0403) (.0412) (.0542) (.0352) (.0357) (.0378) (.0493)

(c) Annual Salary – [Additive Model] – OLS

Black × –114*** –117*** –108** 45.3 –136*** –140*** –123*** 58.9

Wilson [β̂3[ (41.4) (42.3) (42.9) (53.4) (38.3) (39.2) (40.1) (50.8)

β̂3/ Y C0 -.158*** -.163*** -.149** .0627 -.155*** -.16*** -.141*** .0673
(.0573) (.0586) (.0594) (.074) (.0437) (.0448) (.0458) (.0581)

(gT − gC)/gC -.109 -.0815

Y C0 722 722 722 722 875 875 875 875

Y T0 696 696 696 696 696 696 696 696

Y C1 994 1,169

Y T1 854 854
gC 1.38 1.34
gT 1.23 1.23

Year FE Y Y Y Y Y Y
Individual FE Y Y Y Y
Race×Age FE Y Y
Observations 92,687 92,687 92,687 92,687 92,687 92,687 92,687 92,687

Notes: Data used: individual-by-year panel data following civil servants from Aneja and Xu (2022). *** denotes significance
at 1%, ** at 5%, and * at 10%. Standard errors are clustered at the individual level. Black civil servants are matched to white
counterparts using a CEM approach, as detailed in Aneja and Xu (2022). I use the CEM weights in the specifications that
yield the estimates in columns 1-4, and present results from analogous unweighted regressions in columns 5-8. Columns
1 and 5 report coefficients from an uncondtional DD regression. In columns 2 and 6, year fixed effects are included as
additional controls. In columns 3 and 7, individual fixed effects are also included. Finally, in columns 4 and 8, race-by-age
deciles are included as additional controls.

For both CEM-weighted (Column 1) and the unweighted (Column 5) results, the estimated

DD coefficients from a log-OLS specification appear to be attenuated. I provide estimates from

a level-PPML estimation approach in panel (b), which confirms this assessment, at least for

the unconditional settings. Notice that the exponentiated PPML estimate is exactly equal to

the proportional difference in growth rates that one estimates with a DD design and a log-

dependent variable: exp(β̂2)−1 = (gT −gC)/gC . To conclude, Jensen bias leads one to estimate

too small a penalty to Black civil servants under the Woodrow Wilson presidency for the baseline

specification (Column 3, Column 7).

The results from the levels-OLS approach confirm the evidence accrued from the levels-

PPML approach. The sign-congruence of these results was expected. The size of the DD

estimates from the multiplicative and additive model are broadly similar too – the proportional

difference in growth rates from the PPML estimates (exp(β̂2) − 1) are of a similar magnitude

to the difference in differences of outcomes, normalized by the baseline control mean (β̂3/ Y C0).

These similarities are only broad. For the baseline specification for the CEM-weighted data,
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one would conclude, after accounting for Jensen bias, that Black civil servants experienced a

10% fall in earnings under the Wilson presidency assuming a multiplicative model, or a 14.9%

decline based on an additive model, which would I argue is more appropriate here.

5 Conclusion

The aim of this paper is to make clear the consequence of functional form assumptions when one

uses a DD model in an empirical setting where the baseline outcome distribution across groups

differs substantively. I provide a condition, based on the aggregate time effect and the relative

difference in baseline means, whereby a level- and log-specification will yield estimates of the

DD term of opposing signs. The key reason that this sign-switch can occur is that using a DD

model with a log-dependent variable leads to the estimation not of a difference-in-differences,

but rather an approximation of the relative difference in growth rates across groups.

Using both simulations and empirical examples, I show that one can obtain DD estimates

of different signs depending on whether one specifies the outcome variable in levels or in logs.

Given the wide use of DD models for policy evaluation in areas that can give rise to such large

differences in baseline outcome distributions – e.g., gender gaps in earnings, race gaps in the

length of incarceration spells, house prices across regions or states, or school test scores across

different education regimes – this point is likely to be of broad significance to applied researchers.
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Appendix

A Proofs

Repeating elements of Section 2 to keep this section self-contained, we can write the DD estimand

as:

αATT = {E[Yit | Di = 1, Tt = 1]− E[Yit | Di = 1, Tt = 0]]

− [E[Yit | Di = 0, Tt = 1]− E[Yit | Di = 0, Tt = 0]} (12)

The sample analog of (1) is the DD estimator

α̂DD =
[
Y T1 − Y T0

]
−
[
Y C1 − Y C0

]
(13)

A simple regression specification we can use to estimate the ATT parameter is:

Yit = α1 + α2Treati + α3Postt + α4(Treati × Postt) + εit , (14)

where Treati is a treatment indicator, Postt the post-period indicator, and α4 is the parameter

of interest.

In Section 2, I note that the DD parameter we estimate (β4) with a log-dependent variable

can be expressed as:

β4 ≈ exp(β4)− 1 =

E[Yit | Di = 1, Tt = 1]

E[Yit | Di = 1, Tt = 0]
−
E[Yit | Di = 0, Tt = 1]

E[Yit | Di = 0, Tt = 0]

E[Yit | Di = 0, Tt = 1]

E[Yit | Di = 0, Tt = 0]

=
gT − gC
gC

, (15)

where gC and gT are the respective growth rates in the outcome for control and treated groups.

A.1 Proof for Proposition 1

First, when the level-DD is positive i.e., α4 > 0:

α4 > 0⇒ (E[Y11]− E[Y10])− (E[Y01]− E[Y00]) > 0

⇒ ∆1 −∆0 > 0 (16)

Now consider the case where log-DD is zero i.e., β4 = 0. This occurs when gT = gC (see
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Equation (15))

β4 = exp(β4)− 1 = 0⇒
E[Y11]

E[Y10]

/
E[Y01]

E[Y00]
− 1 = 0

⇒
E[Y11]

E[Y10]

/
E[Y01]

E[Y00]
= 1

⇒
E[Y11]

E[Y10]
=
E[Y01]

E[Y00]

(minus 1 from both sides) ⇒
E[Y11]

E[Y10]
− 1 =

E[Y01]

E[Y00]
− 1

⇒
E[Y11]− E[Y10]

E[Y10]
=
E[Y01]− E[Y00]

E[Y00]

⇒
∆1

E[Y10]
=

∆0

E[Y00]
(17)

⇒ ∆1E[Y00] = ∆0E[Y10]

(minus ∆0E[Y00] from both sides) ⇒ (∆1 −∆0)E[Y00] = ∆0(E[Y10]− E[Y00])

⇒ (∆1 −∆0) = ∆0

(E[Y10]− E[Y00])

E[Y00]

(18)

[Express in terms of (additive) DD model parameters] ⇒ α4 = α3

α2

α1
(19)

Combining Equation (16) and Equation (18) yields a condition for sign(α4) 6= sign(β4):

when 0 < (∆1 −∆0) < ∆0

(E[Y10]− E[Y00])

E[Y00]
we will have sign(α4) 6= sign(β4).

Next, consider the case when the level-DD coefficient is negative i.e., α4 < 0. In this case,

there will be discordance in signs when β4 > 0 or gT > gC , which means the left-hand side of

Equation (18) is greater than the right-hand side. This leads to a sign-switch condition for the

case where α4 < 0:

when ∆0

(E[Y10]− E[Y00])

E[Y00]
< (∆1 −∆0) < 0 we will have sign(α4) 6= sign(β4).

The two conditions can be summarized simply as the following condition, which completes the

proof:

when 0 < |∆T −∆C | <

∣∣∣∣∣∣∆C

(E[YT0]− E[YC0])

E[YC0]

∣∣∣∣∣∣ , we will have sign(α4) 6= sign(β4).
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B DD Research Design Literature Review

Table B1: Articles Using a DD Design Published 2018-2022 in The QJE

Article Any
Con-

tinuous
Out-

come?

Ever
Log
Out-

come?

Article Any
Con-

tinuous
Out-

come?

Ever
Log
Out-

come?

Agan and Starr (2018) 0 – Derenoncourt and Montialoux (2021) 1 1
Alsan and Wanamaker (2018) 1 1 Cameron et al. (2021) 1 0†

Breza et al. (2018) 1 0 Jäger et al. (2021) 1 1
Hansen et al. (2018) 1 0 Carvalho et al. (2021) 1 1
de Ree et al. (2018) 1 0 Guriev et al. (2021) 1 0
Iaria et al. (2018) 1 0 Rose (2021) 1 0

Fowlie et al. (2018) 1 1 Miller et al. (2021) 1 0
Cantoni et al. (2018) 1 0 Setzler and Tintelnot (2021) 1 1
Beraja et al. (2019) 1 1 Breza and Kinnan (2021) 1 1
Cooper et al. (2019) 1 1 Cantoni and Pons (2021) 1 1

Keiser and Shapiro (2019) 1 1 Akcigit et al. (2022) 1 1
Blouin and Macchiavello (2019) 0 – Biasi and Sarsons (2022) 1 1

Kline et al. (2019) 1 1 Bandiera et al. (2021) 1 1
Cengiz et al. (2019) 1 1 Dustmann et al. (2022) 1 1
Smith et al. (2019) 1 0 Bleemer (2022) 1 1

Chodorow-Reich et al. (2020) 1 1 Aneja and Xu (2022) 1 1
Jakobsen et al. (2020) 1 1 Alpert et al. (2022) 1 0

Card et al. (2020) 1 0† Balboni et al. (2022) 1 0
Eliason et al. (2020) 1 1 Gumpert et al. (2022) 1 1
Bustos et al. (2020) 1 1 Alfaro-Ureña et al. (2022) 1 1

Sandvik et al. (2020) 1 1 Alvarez and Argente (2022) 1 1
Heblich et al. (2020) 1 1 Xu (2022) 1 1
Jäger et al. (2020) 1 0 Cai and Wang (2022) 1 0

He et al. (2020) 1 1 Folke and Rickne (2022) 0 –
Ang (2021) 1 0

Notes: This table displays summary information on all articles published in The Quarterly Journal of Economics (QJE)
over the five year period 2018-2022 that used a difference-in-dffierence research design. Any Continuous Outcome? is 0 if
all outcomes are binary, and 1 otherwise. For articles that included at least one continuous outcome, Ever Log Outcome? is
zero if the continuous outcome is never presented in log form, and 1 otherwise. † denotes cases where a continuous outcome
is present, and although the outcome is not logged, it is presented in inverse hyperbolic sine form.
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C Additional Results

C.1 The Recenter-Then-Rescale (RTR) Approach

A simple way to operationalize this rescaling is the following:

Y RC
it =

Yit if Di = 0

Yit − (Y T0 − Y C0) if Di = 1,
(20)

where Y C0 and Y T0 are the respective baseline outcome means for the control and treated

groups. This rescaling is a mean shift of the treatment group distribution – it does not change

the levels-based DD estimate, as I confirm below in the simulation exercise.

What does the DD estimate based on lnY RC
it return? Plugging the rescaled outcome into

Equation (7), and noting that as a direct consequence of the rescaling we have E[Y RC
it | Di =

1, Tt = 0] = E[Y RC
it | Di = 0, Tt = 0], we see that we estimate the difference in post-treatment

outcomes, scaled by the post-treatment control mean:

βRC4 ≈ exp(βRC4 )− 1 =
E[Y RC

it | Di = 1, Tt = 1]− E[Y RC
it | Di = 0, Tt = 1]

E[Y RC
it | Di = 0, Tt = 1]

. (21)

Note the denominator in Equation (21) – it is the control outcome mean in the post-period. I

don’t find this particularly appealing as it is mixing treatment effects with time effects. With

a rescaling, we can express this in terms of the pre-treatment control mean, which aligns this

approach with the first solution I propose: to rescale the levels DD estimate by the control

baseline mean. I show in the simulation results below that in all cases, this recenter-then-rescale

(RTR) approach returns the same estimate as the levels DD estimate normalized by the baseline

control mean. We can express the estimate treatment effect from the RTR approach as:

(exp(βRC4 )−1)×
E[Y RC

it | Di = 0, Tt = 1]

E[Y RC
it | Di = 0, Tt = 0]

=
E[Y RC

it | Di = 1, Tt = 1]− E[Y RC
it | Di = 0, Tt = 1]

E[Y RC
it | Di = 0, Tt = 0]

.

(22)
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C.2 Additional Simulation Results

Table C1: Simulating a Zero Levels DD Effect That Yields a Postive or Negative Log
Effect

Positive Log Effect Negative Log Effect

(1) (2) (3) (4) (5)

Level-Dependent Variable:
DD Estimate [α̂4] –0.00 –0.00 0.00 0.00 –0.00

(0.00) (0.00) (0.00) (0.00) (0.00)
Log-Dependent Variable:

DD Estimate [β̂4] 0.154*** 0.080*** 0.154*** –0.087*** –0.154***
(0.001) (0.000) (0.000) (0.000) (0.000)

exp(β̂4)–1 0.167*** 0.083*** 0.167*** –0.083*** –0.143***
(0.001) (0.000) (0.000) (0.000) (0.000)

(gT − gC)/gC 0.167 0.083 0.167 –0.083 –0.143

Y C0 10.00 10.00 20.00 10.00 20.00

Y C1 12.00 12.00 24.00 12.00 28.00

Y T0 5.00 6.67 10.00 20.00 40.00

Y T1 7.00 8.67 14.00 22.00 48.00

Notes: Results based on 100 simulation runs. *** denotes significance at 1%, ** at 5%, and * at 10%. DD estimates for
both a level- and log-dependent variable are presented in each column. The tables display the mean and (in parentheses)
bootrapped standard error of the DD estimates across all simulation runs. At the base of the table, the four elements of
the DD are presented for reference. The sample size is 40000 in each simulation. Proportion treated and proportion in the
post period are .5 and .5 respectively. The standard deviation of the error term is .2 in all simulations.
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Figure C1: There is no Sign Switch Without a Baseline Outcome Difference or a non-Zero
Aggregate Time Effect

(a) Varying Baseline Outcome Differences (b) Varying the Aggregate Time Effect

Notes: The underlying DGP that creates both graphs is an additive DD model specification, thus taking the form of

Equation (3). In the left-hand graph, I set the following as fixed: YC0 = 50, YT1 − YT0 = 30, YC1 − YC0 = 0 (this last

choice means the aggregate time effect is zero). What varies is the relative baseline difference: (YT0 − YC0)/YC0 = α2/α1.

Once the relative baseline difference is fixed, this yields a specific value of YT0 for the simulation exercise. In the right-hand

graph, I set the following as fixed: YC0 = 50, YT0 = 50, (YT1−YT0) = (YC1−YC0)+10. Note, there is no longer a baseline

difference in outcome means. What varies is the aggregate time effect, (YC1 − YC0). Once the aggregate time effect is

fixed, this yields a specific value for both YC1 and YT1 for the simulation exercise. For each increment of relative baseline

difference and aggregate time effect values respectively, 10,000 simulations are conducted. In both cases, the specification

leads to a constant (levels) DD effect of 10 units, which is why the black line is horizontal. The sample size is 40,000 in

each simulation. Proportion treated and proportion in the post period are .5 and .5 respectively. The standard deviation

of the error term is .2 in all simulations.
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C.3 Additional Results for the Replication of Derenoncourt and

Montialoux (2021)

Figure C2: The Pattern of Estimates From Derenoncourt and Montialoux (2021) is Sub-
stantively Different With a Level-Dependent Variable Specification

[Multiplicative Model]

(a) ln(Earnings) – Baseline

[Additive Model]

(b) Earnings – Baseline

(c) ln(Earnings) – By Education Level (d) Earnings – By Education Level

(e) ln(Earnings) – By Race (f) Earnings – By Race

Notes: Data used: March CPS, 1962-1981. Sample weights are used throughout the analysis. I impose the same sample

restrictions as Derenoncourt and Montialoux (2021). The coefficient plot displays DD coefficients along with 95% confidence

intervals. Standard errors are clustered at the industry level. Baseline control variables include: a polynomial of order 3 in

experience, dummies for: gender, years of schooling, working part-time, categories for weeks worked last year, hours worked

last week, marital status, occupation, and industry. A dummy for Black is also included in all specifications except for the

final rows, as these figures reflect estimates by race. Figure C2c and Figure C2d are based on splitting the sample based

on highest level of education (low = strictly less than high school graduation, high = high school graduation and above).
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C.4 Additional Results for the Replication of Heblich et al.

(2020)

Figure C3: Parish Population Over Time by Treatment Groups

Notes: I use the same parish-by-decade panel data sample as Heblich et al. (2020). The dashed, vertical line represents

the arrival of the first railway opening.
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Figure C4: Heblich et al. (2020) Baseline Model Without Parish-Specific Time Trends

(a) ln(Parish Population) – [Multiplicative Model] – OLS

(b) Parish Population – [Multiplicative Model] – PPML

(c) Parish Population – [Additive Model] – OLS

Notes: I use the same parish-by-decade panel data sample as Heblich et al. (2020). The coefficient plot displays DD and

DDD coefficients along with 95% confidence intervals. Standard errors are clustered at the borough level. Baseline control

variables include: parish fixed effects and year fixed effects, but exclude parish-specific trends – this exclusion is what

differentiates Figure C4 from Figure 2. The figures in the left-hand column display the βτ coefficients from Equation (9).

The figures in the central column display the βτ coefficients from Equation (10). The figures in the right-hand column

display the γτ coefficients from Equation (10). In figures in the central and right-hand columns, the three different color-

shape combinations represent three different definitinations of central London. See the notes to Figure V of Heblich et al.

(2020) for more details.
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D Empirical Examples

I now present two empirical examples to supplement the three published case studies that I

present in Section 4. Both of the settings were chosen with an eye on the disparate baseline

outcome distribution across the groups of interest, which as I note above is a necessary, but not

sufficient, condition to generate DD estimates of opposing signs for the level- and log-dependent

variable specifications. I first examine the differential racial impact of the great recession on

working age males in the US. I then investigate the differential impact of the Brexit vote on

Inner vs Outer London property prices. Note, these two examples are not based on previously

published work.

D.1 Male Earnings and The Great Recession

The empirical specification I use to investigate the differential racial impact of the Great Reces-

sion on male earnings is:

Incomeit = δBlacki + γ(Blacki × Postt) +X
′
iπ + θs×t + εit (23)

where Incomeit is the total income earned in the previous year, and is specified in either levels or

logs, for individual i in year t. Blacki takes a value 0 for non-Hispanic white males, and a value

of 1 for Black males. Postt is a dummy for the post-Great Recession period16. Xi is a vector

of individual characteristics that includes dummies for highest level of educational attainment,

dummies for potential experience in years, an indicator for being married, and dummies for

metro area classification. θs×t is a set of state-by-year fixed effects. The error term is εit. I

specify Eicker-Huber-White standard errors throughout. I present a set of summary statistics

for the setting, and an overview of the data and sample selection decisions, in Appendix D.2.

Table D1 presents the key parameter estimates from both a level and log version of Equation (23).

The DD estimate presented in Column (1) suggests that Black men fared slightly better in the

Great Recession than their white counterparts. Figure D1 shows that both groups suffered

absolute falls in incomes during this period, so the DD estimate in Column (1) reflects that

the income drop for Black men was smaller than that for white men. The results in Column

(2) present a starkly different conclusion, with a statistically significant, negative DD estimate.

Using the raw means for the four DD cells, we can reconcile these two estimates – although Black

men experience a lower absolute income drop, relatively it was larger than for white men as the

drop occurred from a lower baseline level of income, which is why the coefficient in Column (1)

is positive, and in Column (2) is negative.

With the benefit of having worked through what one recovers from a level and log specifi-

cation in Section 2, and seen the consequences for these different functional form specifications

of disparate baseline outcome distributions in Section 3, with the information at hand it is a

16Given that income in year t reflects income from the previous year, I code Postt = 1[Y ear >= 2009]
in order to capture the Great Recession kicking in in 2008.
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Table D1: Level- and Log-Specifications Yield Estimates of Opposing Signs for the Impact
of the Great Recession on the Racial Income Gap

(1) (2) (3) (4) (5) (6)

All Education Levels No College College

Income in
Levels

Income in
Logs

Income in
Levels

Income in
Logs

Income in
Levels

Income in
Logs

Post × Black 775* -.0361** 1045 -.0231 346 -.0511**
(467) (.0142) (762) (.0191) (487) (.0213)

exp(β̂4)–1 -.0354*** -.0228 -.0498**
(.0137) (.0187) (.0202)

Y C0 48088 48088 58498 58498 31485 31485

Y C1 45905 45905 55160 55160 29806 29806

Y T0 30020 30020 38644 38644 22197 22197

Y T1 28495 28495 36080 36080 20866 20866

Adjusted R2 .201 .202 .159 .152 .0846 .123
Observations 253,491 253,491 155,947 155,947 97,544 97,544

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. Eicker-Huber-White standard errors in parentheses. The
dependent variable is total income in 1999 Dollars, measured in levels in odd-numbered columns, and in logs in
even-numbered columns. The following control variables are included in all regressions: state-by-year fixed effects,
dummies for highest level of educational attainment, dummies for potential experience in years, an indicator for being
married, and dummies for metro area classification. Data used: CPS 2005-2012.

straightforward task to dissect the reason for the sign difference documented in Columns (1)

and (2). However, in a typical applied setting, where a researcher is aiming to document the

impact of a new policy using a DD model, the source of such disparate results may be less clear.

It is the hope that this paper will aide in such settings.

The remaining columns of Table D1 present the DD parameters for both level and log

specification, splitting the sample by education levels.
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D.2 Male Earnings and The Great Recession – Supplemental

Information

D.2.1 Long-Run Trends in Outcomes

Figure D1: Mean Annual Earnings By Race

Notes: Data used: CPS 1977-2020. The graph plots mean annual earnings, in 1999 Dollars, separately for Black and white

men. Sample weights are used throughout.

D.2.2 Balance Tables

D.2.3 Data and Sample Selection

I use the ASEC March supplement of the CPS for the years 2005-2012, and restrict the sample

to males, aged 25-65, who are either white non-Hispanic or Black. I omit those housed in

group quarters. I additional remove those in the army, agricultural workers, those in the private

household sector, and the self-employed. In order to maintain the same sample for both level

and log specifications, I restrict total income to be strictly positive.
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Table D2: Balance Tests for CPS Data

(1) (2) (3) (4) (5) (6) (7)

White Black

Pre Post p-value:
Differ-
ence

Pre Post p-value:
Differ-
ence

p-value:
DD

Sample Size 115,525 113,577 17,846 19,244

Potential Experience 23.2 23.7 [.000] 22.5 23.3 [.000] [.043]
(11.3) (11.7) (11.2) (11.5)

Education:
≤ High School .0757 .0645 [.000] .147 .129 [.000] [.106]
High School .318 .311 [.004] .4 .394 [.297] [.941]
Some College .269 .274 [.024] .27 .29 [.000] [.008]
College .221 .231 [.000] .13 .128 [.685] [.010]
Postgraduate .117 .12 [.067] .053 .0588 [.028] [.357]

Married .65 .632 [.000] .443 .419 [.000] [.362]

Metro Status:
≤ Non-Metro .184 .177 [.000] .106 .0987 [.030] [.904]
Central City .196 .204 [.000] .441 .433 [.188] [.016]
Outside Central City .452 .453 [.818] .35 .36 [.077] [.125]

Notes: Means and standard deviations (in parentheses for continuous covariates) are shown. p-values are based on OLS
regressions with Eicker-Huber-White standard errors. Data used: CPS 2005-2012.
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D.3 London House Prices and the Brexit Vote

I next turn to a different setting – the London housing market in the period around the Brexit

vote. To understand the differential impact on house prices in Inner and Outer London, I specify

a hedonic house price model of the form:

Priceit =δ(Inneri × Postt) +
M∑
m=1

(Marketm × Postt ×X
′
iγm) + πm×t + θb + εit , (24)

where Priceit is the house price of house i (specified in either levels or logs), sold in period t

(measured at the month-by-year level). Inner takes the value of 0 for Outer London boroughs,

and the value of 1 for Inner London boroughs.17 Postt is a dummy for properties sold post-Brexit

vote, and δ is the parameter of interest.

Xi is a vector of property characteristics, specifically interactions between dummies for

property type categories and new build status, and interactions between dummies for leasehold

and new build status. I include interaction between the vector of housing characteristics, Xi,

and market dummies in order to respect the “law of one price function” (Bishop et al., 2020).

This allows the valuation of key property characteristics to vary across local housing markets. I

allow the coefficients on all housing characteristics to differ in the pre and post periods, thereby

allowing the hedonic price function to shift post-policy. I do so in order to avoid conflation bias

(Kuminoff and Pope, 2014; Banzhaf, 2021).

πm×t captures month-by-year housing market shocks to house prices. Housing markets are

Travel To Work Areas – similar to Commuting Zones in the US. θb is a spatial fixed effect at

the level of Output Area, akin to a census block in the US. Output Areas (OA) are the smallest

census-based geographical unit – there are 181,408 of these in England and Wales, with an

average population of 309 at the 2011 census.18. The Output Area fixed effect will capture all

time-invariant local amenities – green spaces, transport links, shops, proximity to busy roads or

motorways, as well as many slow-moving time-varying area characteristics (I am considering a

minimum of 2 years, and a maximum of 4 years for these estimations), such as access to good

schools or proximity to sources of pollution. The error term is εit. I specify Eicker-Huber-White

standard errors throughout.

I first provide results for all property types in panel A of Table D3. The DD estimates for the

level specification goes against my initial hypothesis that post-Brexit, Inner London property

prices would suffer. For a variety of time windows around the Brexit vote ranging from 12

to 24 months, I document positive increases in Inner London prices relative to Outer London.

17To confuse matters there are two definitions of Inner London – the statutory definition, and the
statistical version. In order to be consistent with both measures, I apply the strictest definition – in order
for me to classify a borough as Inner London, a borough must be classified as Inner London by both def-
initions. This leads me to code the following boroughs as belonging to Inner London: Camden, Hackney,
Hammersmith and Fulham, Islington, Kensington and Chelsea, Lambeth, Lewisham, Southwark, Tower
Hamlets, Wandsworth, and Westminster.

18https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populat

ionestimates/bulletins/2011censuspopulationandhouseholdestimatesforsmallareasinengland

andwales/2012-11-23
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As before, the log specification results are of the opposite sign, documenting a 4-7% decline in

relative growth rates of Inner London properties. As in the previous section, we are sufficiently

informed with the cell sample means, and the trends documented in Figure D2, to understand

why. Once again, the disparate baseline outcome distributions play a key role. While Inner

London properties experience a slight increase in levels compared to Outer London properties,

Inner London properties (which started off at a much higher baseline level) grew less, leading

to a negative proportional difference in growth rates – what the DD parameter approximates in

a log specification.

Given that apartments account for almost 80% of property transactions in Inner London

(see Table D4), in panel B of Table D3 I restrict the sample to only apartment transactions, and

repeat the analysis. The reason to do so is to get a fairer sense of the house price impact of Brexit.

The unintended consequence of this sample restriction was to create a larger wedge between the

baseline outcome distributions. Looking at Column (3), the ratio of sample means for treatment

to control in the baseline period is 1.74 in panel A, but 1.98 in panel B. This increased disparity

in baseline outcome sample means explains at least part of why the difference between the level

and log specifications is even more pronounced in panel B.
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Table D3: Level- and Log-Specifications Yield Estimates of Opposing Signs for the Impact
of the Brexit Vote on Inner London House Prices

Time Window Around Brexit Vote

12 Months 15 Months 18 Months 21 Months 24 Months

A.) All Property Types

Ai.) Price Specification

Post × Inner London [α̂4] 10,045 16,861** 12,125* 10,639* 4,588
(8,285) (7,031) (6,416) (6,035) (5,713)

Aii.) log(Price) Specification

Post × Inner London [β̂4] -.039*** -.0421*** -.0502*** -.0574*** -.0694***
(.00379) (.00334) (.00307) (.00286) (.00267)

exp(β̂4)–1 -.0383*** -.0412*** -.049*** -.0558*** -.0671***
(.00365) (.0032) (.00292) (.0027) (.00249)

Y C0 457,259 451,339 445,855 439,377 437,491

Y C1 482,338 488,284 490,084 490,799 491,442

Y T0 791,380 779,916 776,787 773,525 775,656

Y T1 825,855 829,664 836,659 845,105 847,116
Observations 210,626 262,937 309,348 358,806 411,928

B.) Apartments Only

Bi.) Price Specification

Post × Inner London [α̂4] 14,069** 12,321** 14,122*** 11,360** 8,373*
(6,310) (5,640) (5,205) (4,966) (4,741)

Bii.) log(Price) Specification

Post × Inner London [β̂4] -.0355*** -.0416*** -.0483*** -.0565*** -.0665***
(.00473) (.00418) (.00383) (.00355) (.00331)

exp(β̂4)–1 -.0349*** -.0408*** -.0472*** -.055*** -.0643***
(.00457) (.00401) (.00365) (.00336) (.0031)

Y C0 340,331 336,618 333,686 328,396 325,193

Y C1 371,619 373,860 376,044 376,540 377,647

Y T0 674,757 665,064 659,124 656,169 652,712

Y T1 714,726 712,594 724,406 734,085 734,700
Observations 118,272 147,786 173,710 201,350 231,266

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. Eicker-Huber-White standard errors in parentheses. The
dependent variable house price in specification i.) and log house price in specification ii.). The following control variables
are included in all regressions: block fixed effects, post-by-TTWA-by-property-type-by-new-build dummies,
post-by-TTWA-by-leasehold-by-new-build dummies, and TTWA-by-year-by-month fixed effects. Data used: Land
Registry Price Paid data 2014-2018.
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D.4 London House Prices and the Brexit Vote – Supplemental

Information

D.4.1 Data Sample Selection

I use the Land Registry Price Paid data for a 2 year window around the Brexit vote, which

occurred on 23 June 2016. The Price Paid data covers almost every house sale in England and

Wales.1920 The data is limited in terms of the household characteristics it contains (indicators

for whether the property is a leasehold, if the property is a new-build, as well as property

type). In order to compensate for the paucity of household characteristic controls, I specify an

extremely low-level spatial fixed effect at the level of Output Area, akin to a census block in the

US. Output Areas (OA) are the smallest census-based geographical unit – there are 181,408 of

these in England and Wales, with an average population of 309 at the 2011 census.21

D.4.2 Long-Run Trends in Outcomes

Figure D2: Mean House Prices in Inner and Outer London – All Properties

Notes: Data used: HM Land Registry, 24 June 2010 - 23 June 2018. The graph plots mean monthly house prices for all

properties sold during this period, separately for Inner and Outer London. I augment months to finish on the 23rd of the

month, in order to align the data with the Brexit vote.

19Source: https://www.gov.uk/government/statistical-data-sets/price-paid-data-downlo

ads, HM Land Registry.
20The Land Registry list reasons for the minority of sales that are not registered at https://www.go

v.uk/guidance/about-the-price-paid-#data-excluded-from-price-paid-data.
21https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populat

ionestimates/bulletins/2011censuspopulationandhouseholdestimatesforsmallareasinengland

andwales/2012-11-23
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Figure D3: Mean House Prices in Inner and Outer London – Apartments Only

Notes: Data used: HM Land Registry, 24 June 2010 - 23 June 2018. The graph plots mean monthly house prices for all

apartments sold during this period, separately for Inner and Outer London. I augment months to finish on the 23rd of the

month, in order to align the data with the Brexit vote.

D.4.3 Balance Tables

Table D4: Balance Tests for House Sales Data

(1) (2) (3) (4) (5) (6) (7)

Outer London Inner London

Pre Post p-value:
Differ-
ence

Pre Post p-value:
Differ-
ence

p-value:
DD

Sample Size 108,268 96,396 56,386 48,912

New Build .105 .139 [.000] .169 .227 [.000] [.000]

Property Type:
Detached House .0662 .0625 [.001] .00727 .00634 [.065] [.021]
Semi-Detached House .184 .189 [.004] .0271 .0281 [.355] [.044]
Townhouse/Terraced .302 .295 [.000] .169 .167 [.319] [.112]
Apartments .448 .454 [.007] .797 .799 [.354] [.275]

Leasehold .458 .466 [.000] .806 .808 [.419] [.078]

Notes: Means are shown. p-values are based on OLS regressions with Eicker-Huber-White standard errors. Data used:
HM Land Registry, December 24, 2014 - December 23, 2017.
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