More Powerful Cluster Randomized Control Trials

Brendon McConnell and Marcos Vera-Hernandez*

April 11, 2024

Abstract

Balanced experimental designs, in which the number of treatment and control units are
the same, do not maximize power subject to a cost constraint when treatment units are more
expensive than control ones. Despite this, such balanced designs are the norm in economics.
This paper describes methods to optimally choose the number of treatment and control
clusters, and the number of units within treatment and control clusters, allowing for full
flexibility. We use three archetypal examples from the development literature to illustrate

the magnitude of the power gains, which lie between 8.5 and 19 percentage points.
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1 Introduction

One of the key challenges in economics is to estimate causal relationships between economic
variables and policy instruments. Randomized Controlled Trials (RCT) have become one of
the main tools that researchers use to accomplish this objective (Hausman and Wise, 1985;
Burtless, 1995; Heckman and Smith, 1995; Duflo et al., 2007; Hamermesh, 2013; Olken, 2020).
More simple RCTs are usually set up with the objective of estimating the impact of a certain
policy or intervention, while more complex RCTs can be implemented to test between competing
hypotheses that explain a phenomenon (also known as field experiments, see Duflo (2006); Levitt
and List (2009); Bandiera et al. (2011); List (2011); List and Rasul (2011); Karlan and Appel
(2016); Duflo (2020)).

The focus of this paper is on maximizing the statistical power — the probability that the null
hypothesis of zero effect is correctly rejected — of a cluster RCT given a cost constraint. This
is important because not only do underpowered RCTs have a smaller probability of detecting a
true effect, but they also have a smaller probability that a statistically significant result reflects
a true effect (Wacholder et al., 2004; Ioannidis, 2005; Button et al., 2013). Ioannidis et al.
(2017) find that the median statistical power in Economics (in general, not specifically in RCT
studies) is 18%. Moreover, low-powered RCTs are more likely to lead to estimates whose sign
is the opposite to the true one, and estimates whose size is much larger than the true effect size
(Gelman and Carlin, 2014).

It is well known that in the case of individual level randomization, a given power can be
achieved at a smaller cost if more control and fewer treatment units are sampled than in the
balanced design (Cochran, 1963; Nam, 1973; Duflo et al., 2007).! However, this problem is
considerably more complex in cluster RCTs, not only because there are no closed form solutions,
but because the pattern of the optimal solution might not be monotonic. Indeed, depending
on the cost structure, it might be optimal to have more treatment clusters but fewer units
within treatment clusters than control ones, or fewer treatment clusters but more units within
treatment than control clusters.

In the Statistics literature, there is a long tradition of solving the dual problem: minimizing
costs subject to achieving a given level of power. Instead, the primal problem of maximizing
power subject to a cost constraint is more relevant in economics research, in which funding bodies
specify a maximum funding amount per project. Although we focus on the primal problem, the
Appendix includes the methods to solve the dual one.

This paper makes two key contributions. First, we derive methods to calculate the optimal
sample for a cluster RCT with an endline outcome measure, allowing for different number of
treatment and control clusters, as well as different number of units within treatment and control
clusters. Prior to our work, there was no existing solution to the optimal sample allocation in
the cluster randomized setting that allowed for full flexibility of both choice of number of clusters
for both treatment and control, and the choice of number of units within both treatment and
control clusters.? As we detail in our simulations, this flexibility matters. Our method can be

applied to solve the primal problem of maximizing power subject to a cost constraint, or to

LAlthough, for a fixed total number of units, having an unbalanced number of treatment and control units
decreases the power of the RCT, this can be compensated, at a lower cost, by increasing the number of control
units (as they are cheaper than the treatment ones).

2Cochran (1963), Nam (1973), and Duflo et al. (2007) all provide an optimal solution in the individual ran-
domization setting. Our work provides the optimal solution for the cluster randomization case.



minimize costs subject to a minimum power.

We model the cost function of the RCT as having a fixed cost per cluster as well as a variable
cost per (within cluster) sampled unit. We consider two pure cases and a hybrid one: (i) the
fixed cost per cluster is different between treatment and control but the variable cost is the same,
(ii) the fixed cost per cluster is the same between treatment and control but the variable cost
is the different, as well as, (iii) the hybrid case in which both the fixed and variable costs are
different. It is important to highlight that even in a pure case, there are gains in a fully flexible
solution that allows for the different number of clusters and units within clusters for treatment
and control arms.

Our second contribution is to show that the gains in power are very significant in typical
cluster RCTs from economics. The first example is a cluster RCT in which headteachers are
given an unconditional grant to improve the school, and the experiment measures the effect of
the grant on children’s hemoglobin levels (a biomarker for nutritional status, and in particular,
anaemia) as in Luo et al. (2019). This is an example in which the fixed cost per school is much
larger in treatment than control clusters (because of the grant) but the variable cost of sampling
a child (hemoglobin test and questionnaire time) is the same in treatment and control schools.

The second example is the case of an unconditional cash transfer program, as is analysed by
Haushofer and Shapiro (2016), in which treated households receive a large unconditional cash
transfer, and in which a cluster design is used to take into account of spillovers and general
equilibrium effects. Unlike the previous example, the fixed cost per cluster is the same inde-
pendently of whether it is a treatment or control one, as the only fixed cost per cluster is the
transportation one. However, the cost of a treatment unit is much higher than a control one,
as the cost of the treatment unit includes the unconditional cash transfer and the interviewing
time, but only the latter for control units.

Our example for the hybrid case refers to the so called “graduation model” in which house-
holds are given large productive assets (i.e., a large animal), time limited cash transfers, as
well as training and support, life skills coaching, and access to health services, as in Banerjee
et al. (2015) and Bandiera et al. (2017). Because these programs provide training, coaching and
access to health services, they need certain infrastructure in the treatment clusters to deliver
these services and hence the fixed cost per treatment cluster is higher. In addition, the cost
of each treated unit is higher because of the productive asset and cash transfer. Hence, this
example synthesizes the previous two cases, by having both larger fixed cluster costs as well as
larger variable treatment costs.

Our results indicate that, compared to a balanced design, optimally allocating the number
of clusters and the number of treatment units can increase power between 8.5 and 19 percentage
points. To obtain these results we use realistic cost estimates based predominantly on the
previous studies and reasonable assumptions on parameters which are unknown to us. We then
compare the costs of the balanced design — in which the number of clusters and units per cluster
is the same between treatment and control — with the optimal allocation that we derive. It
should be noted that we do not replicate all the features of the previous studies, and hence our
results should not be understood as what the previous studies could have gained. Instead one
should view our results as benchmark power gains that can be obtained in a typical cluster RCT
using our proposed method.

We further consider the benefits of our approach, by attaching a monetary value to the



power improvements. To do so, we ask: how much larger a budget would be required to achieve
the same power attained using our approach if instead one implemented a balanced design? In
answering this question, we document sizeable values associated with the power improvement
based on our approach. Expressed in terms of the original budget, these are respectively 22%,
23% and 54% for the three case studies. Put differently, the value of our approach is akin to
using the standard, balanced design but being granted a budget of between 22% to 54% larger.
This valuation exercise underscores the advantage of our approach. By moving away from a
balanced design in a manner that accounts for differential costs, one can make sizeable power
gains for a given budget.

A general feature of the results is that, in all three cases, both the number of clusters and
the number of units within clusters are different between the treatment and control arms, in a
compensating manner. For instance, when the fixed cost per cluster is larger in treatment than
control clusters but the variable costs are the same, not only it is optimal to have fewer treatment
than control clusters, but also to sample more units per treatment than control clusters (in the
margin, it is more efficient to increase the units per treatment cluster than paying the cost of
an additional treatment cluster). In the hybrid case, depending on the differences in fixed and
variable costs, the optimal solution could even involve not only more clusters but also more units
per cluster in the control than treatment arm.

This paper contributes to a growing literature on methods to improve the design of RCTs.
Hahn et al. (2011) consider using the propensity score to reduce the variance of the treatment
effect in a setting in which an experiment is run in multiple waves or replicate previous ex-
periments. McKenzie (2012) studies the problem of how many waves of post-treatment data
to collect to maximize power given a budget constraint, noting that the standard choice of
one baseline and one follow-up wave is unlikely to be optimal in many cases. Carneiro et al.
(2019) focus on the choice of what covariates to collect to maximize power subject to a cost
constraint. Chassang et al. (2012) show how to modify RCTs to improve external validity in
a context in which the outcomes are significantly affected by unobserved effort decisions taken
by experimental subjects, and Banerjee et al. (2020) study experimental design issues by an
ambiguity-averse decision-maker who is concerned with both subjective expected performance
and robust performance guarantees. Burlig et al. (2020) advise against using using sample size
formulae for the ANCOVA estimator (in which the post-treatment outcome variable is regressed
over its baseline value and the treatment indicator), and hence we focus our paper on the case
in which only the post treatment values of the dependent variable are used in the estimation of
the treatment effect. Baird et al. (2018) studies the optimal design of experiments in which an
individual’s outcome depends on the outcomes of others in her group.

With respect to the literature that considers unequal costs of treatment and control units, the
comprehensive reviews by Duflo et al. (2007), List et al. (2011) and Glennerster and Takavarasha
(2013) all consider the case of unequal costs in their reviews of experimental methods, but for
individual RCTs instead of cluster ones. In the statistics literature, Liu (2003) is a pioneer
in considering different costs in a cluster RCT, but the scenarios considered are relatively con-
strained, allowing only either fixed or variable heterogeneous costs, and constraining the solution
to have either the same number of clusters or the same number of units in treatment than con-
trol. Shen and Kelcey (2020) has recently relaxed some of these constraints but still requires the

number of units to be the same in treatment than in control clusters. Moreover, these papers



focus on minimizing costs given a level of power, instead of maximizing power given a maximum
cost.

The paper is organized as follows: the next section describes the data generating process and
defines the estimator. Section 3 outlines the method to determine the optimal sample size to
maximize power given a cost constraint. Section 4 presents three examples from the literature
to which we apply our method, and whose results are presented in Section 5, contrasting the
optimal sample allocation with the balanced design, and Section 6 concludes. In the Appendix

B, we describe the dual approach of minimizing costs subject to achieving a given level of power.

2 Data Generating Process and Estimators

In this paper, we will determine the sample calculations in the context of a cluster randomized
trial in which j = 1, ..., K clusters have been randomized into treatment (denoted by Tj = 1) or
control (T; = 0). For each cluster j, data on the value of the outcome variable for individual 4,
Yi;, is available at the moment of time in which the treatment effect will be estimated (endline).

The data generating process is:
Yij:a+5Tj+Uj+6ij, (1)

where « represents the population mean of the outcome variable in the control group, ¢§ is the
treatment effect, v; is a cluster-level error term distributed N(0,02) and ¢;; is an independent
and N(0,02) distributed individual level error term. The intra-cluster correlation (ICC), which

is a key parameter in determining the required sample size in cluster RCTs is given by:
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Sample size calculations are particular of the estimator that will be used to estimate the
treatment effect, §. In this case, the most standard is the Ordinary Least Squares (OLS)

estimator of ¢, 30 LS, in the regression:
Yl‘j = a—l—(STC—i—uij, (2)

where u;; is a zero mean error term, with var(u;;)=c2+0? = o2, cov(u;j,up;)=02 for i # h,
and cov(u;j, up)=0 if j # . The above discussion makes explicit that the outcome variable is
measured at the individual level. Cluster RCTs can also be analyzed with cluster level outcomes,
such as prices, in which only one observation per cluster of the outcome variable is available. In
these cases, one would use the standard formulae thought for individual level clusters ((Cochran,
1963; Nam, 1973)), but where the cost parameters reflect those of the cluster.

3 Optimal Sample Size Determination - Maximizing Power

We now focus on optimal sample size determination for the case where the researcher wants

to maximize power subject to a fixed budget.? The power, 1 — &, of the two-tailed test at «

3For the reader interested in the dual problem, whereby one minimizes the total cost of the RCT subject to
achieving a given level of power, please see the Appendix B.



significance for the null hypothesis that Hy : § = 0 when using estimator boLs is given by
Teerenstra et al. (2012) as:
0

1=k = Thgpky—1(————= — b2 ko+hi—1) 3)
var(0)

where T is the cumulative distribution function of the ¢-distribution with (ko + k1 — 1) degrees

of freedom (DoF), and the variance of § is given by*?

. 2[1+(m0—1)p+1—|—(m1—1)p]’ )

var(d) =o — —

where ky and ki are the respective numbers of control and treatment clusters, and mg and mq
are the number of sample units per control and treatment clusters respectively.

A researcher will want to optimize the design of the cluster RCT by determining the sample
that maximizes the power, subject to a budget constraint. We assume that the costs of the RCT
are given by:

C = (fo +vomo)ko + (f1 +vimy)k, (5)

where fy and f; represent the fixed costs per control and treatment cluster respectively, and
vo and vy represent the variable costs per control and treatment units respectively. In cases in
which all units in a treatment cluster are treated, the difference in costs are better reflected in
the fixed cluster costs, as one would expect treatment and control clusters to be of the same
size. This would be the case, for instance, of our first example in which school principals are
given a grant to improve the school.

We write the constrained optimization problem that the researcher faces as:

max t1_p = L —ta
{mo,m ko ke } fuar(g) ’
s.t.
C = [(fo +vomo)ko + (f1 + vim1)ki] (6)

In its general form, the constrained optimization problem above does not have closed form
solutions. However, it can be solved numerically using robust numerical optimization methods
such as Simulated Annealing (Corana et al., 1987; Goffe et al., 1994; Goffe, 1996; Xiang et al.,
2013). An advantage of using Simulated Annealing is that it can easily deal with lower and

upper bounds in the number of clusters and number of units per cluster. ©

4Shen and Kelcey (2020) express the variance differently, but we show in the Appendix C that their formulation
is equivalent to formula (4).
5Tt is straightforward to adapt (4) in order to allow the variance of the outcome to differ across treatment and

control units: var(é) = [ag H(m";‘)kgnp + 02 1+(7:Ln11k*11),0].

5We provide an R package Optimal.sample to perform this optimization and obtain the optimal sample.
We initialize the algorithm using the Normal distribution to obtain an initial estimate of the total number of
clusters, which we use to repeat the optimization using the t-distribution. We repeat this process until we achieve
convergence. Our R package allows to include lower and upper bounds in the number of clusters and number of
units per cluster.



3.1 Pure Cases with Limited Flexibility

Limited flexibility, i.e., where the number of clusters is the same in both treatment and control
arms, or here the number of units within clusters is the same in the treatment and control arms,
will lead to lower power than in the fully flexible case in which we all four sample parameters are
different. However, due to logistical or other practical considerations, there might be cases in
which the researcher cannot implement the fully flexible solution, and must impose the solution
to have either the same number of clusters in each treatment arm, or the same number of units
within cluster per treatment arm. When this is the case, the constrained optima can be found
in two stages: first, through closed form solutions, find the optimal ky and k1 (mg and m;) as a
function of m=mo=m; (k=ko=Fk1). Second find the optimum m, kg, k1 (k, mo, m1) through a
simple numerical grid search on m (k). For simplicity, we focus on the two pure cases, in which

either fixed or variable costs per cluster are homogenous.

3.1.1 Homogeneous Variable Costs Within Cluster

Here we consider the case in which the unit cost is the same in treatment and control (vy =
v1 = v), and we simplify the optimization by using the restriction that the number of units per
cluster is also the same in treatment and control ((mg = m; = m)).” We allow for the fixed
costs per cluster to be different between treatment and control (fy # f1), and we solve for the
number of treatment and control clusters (kg # k1), conditional on m. In this more restricted
scenario, we substitute (mo = m; = m) and (vp = v; = v) in (4), and rewrite the cost function

as C' = (fo +vm)ko + (f1 +vm)k, giving the optimization problem as:

max ti_p = d —ta
N T
s.t.
C = (fo+vm)ko + (f1 +vm)ky (7)

where the only unknowns are kg and k; because the number of units to be sampled per each
cluster is exogenously given by m.

The solution to the optimization problem yields the following optimality condition:

kl - (f[) + vm)
ko (f1 +vm)’ (8)

which clarifies that cheaper clusters will be over-sampled, but that the difference between the
number of treatment and control clusters will be less than proportional to the difference in costs.

Using the cost function formula, we can write the optimal values of kg and k; as functions

"It should be noted that even if (vo = v1), we would not expect (mo = m1) to hold in the unconstrained
optima.



of the model parameters:

C
k*:: an
= orom + Voo o ©)
k= ¢ 0)

(fr +vm) ++/(fo +vm)\/(fi +vm)

*
1—k>

subject to the budget constraint C, by substituting the equations (9) and (10) into the objective

We can now present an expression for the t-statistic associated with maximum power, ¢

function in (7) to yield:

f = 0 —ta (11)

1—k .
\/02 1+(m—1)p [(\/(f0+vm)+\/(f1+vm))2 ’
C

m

The maximum level of power subject to the cost constraint is obtained by inverting (11). Note
that the above closed form solutions were obtained using the assumption that the number of units
to be sampled within each cluster, m, was exogenously given. In practice, it is straightforward
to circumvent this assumption by performing a grid search on m — compute the optimal values
of kg and k; for different values of m, and choose the one that maximizes the power. Hence, the

key assumptions for this special case to be useful are mg = m; and vy = v;.

3.1.2 Homogeneous Fixed Costs Per Cluster

In this subsection, we consider the case in which the fixed cost per cluster is the same in treatment
and control (fy = fi = f), and we simplify the optimization by using the restriction that the
number of clusters is also the same in treatment and control ((kg = k1 = k)). We allow for the
unit costs within cluster to be different between treatment and control (vg # v1), and we solve
for the number of treatment and control units per cluster (mg # m1), conditional on k. These
simplifications allow us to re-write the cost function as C' = (f + vomo)ko + (f + vimi)k1 =
2fk 4+ vomok + vimqk.

In this case, we write the constrained optimization problem as:

max 1y = d —ta
{mo,m1} \/0_2’1C [1+(TZ;)O—1)p N 1+(77;111—1)p 2
s.t.
C = 2fk + vomok + vimik (12)

The solution to the optimization problem yields the following optimality condition:

m v
ALY (13)
mo U1

which clarifies that the over-sample of the cheaper units is less than proportional to the difference

in costs. Using the cost function formula, we can write the optimal values of my and m; as



functions of the model parameters:

C—2fk C—2fk
(vo + /vo\/01)k (v1 + /oo /01)k

With these optimal values at hand, we can then write down an expression for the t-statistic

and m] =

mp = (14)

associated with maximum power, t]_,, subject to the budget constraint C, by substituting the

relations in equations (14) into the objective function in (12) to yield:

0

ook [2o+ (et (vam + v

The maximum level of power subject to the cost constraint is obtained by inverting (15). As
noted above, one can circumvent the assumption of a fixed, exogenously given k by running a grid
search over different values of k, — compute the optimal values of mg and m, for different values
of k, and choose the one that maximizes the power. Hence, the actual important assumptions

for this special case to be useful are kg = k1 and fy = f1 = f.

4 Empirical Examples

The following section applies the methods described above to prominent archetypes of cluster
RCTs to obtain realistic estimates of the cost savings that can be achieved when choosing the
sample to minimize costs. Whenever possible, we use actual cost from the experiments, but
make realistic assumptions when they are not available. We do the same for the intra cluster
correlation or other parameters needed for the sample size calculation. It should be noted
that we do not replicate all the features of the previous studies, and hence our cost savings
estimates should not be understood as what the previous studies could have saved, but more
like benchmark savings that can be obtained in a typical cluster RCT. See Appendix A.2 for a

detailed explanation of the parameter values used in the computations below.

4.1 Heterogeneous Fixed Costs per Cluster

In many cluster RCTs, the treatment costs are divorced from the sampling costs. The sampling
costs involve the time and material costs of recruiting, testing, and interviewing subjects, while
the treatment costs are fixed per cluster and do not depend on the number of sampled subjects.
An example of such an RCT is a school grant program that aims at increasing school resources
and improves students’ outcomes.® The sampling costs will be the same in treatment and control
clusters (vg = v = v) , while the fixed cost of including a treatment cluster, f;, are larger than
the control cluster fixed costs, fy, because the fixed cost treatment cluster includes the school
grant. The cost function that represents this scenario is given by C' = ( fo-+vmg)ko+(f1+vmy)ki,
which is obtained from substituting vo = v1 = v in (5). We build our illustrative example based
on Luo et al. (2019) in which one of the treatment arms considered is a school grant provided

for rural primary schools in five prefectures of western China.

8The amount of the grant might depend on the number of children in the school but not on the number of
children sampled, hence the cost of the grant is fixed per cluster.



4.2 Heterogeneous Variable Costs per Cluster

Here we consider the case where fixed costs per cluster are equal in treatment and control, but
variable costs are different. This leads to a cost function of the form C' = (f + vomg)ko +
(f +vimi)ki. A real life example is one of an unconditional cash transfer in which only some
households in the treatment clusters are given the cash transfer (see for instance, Haushofer and
Shapiro (2016)). In this type of RCT, treatment and control sample households will have very
different costs because the cost of the sampled treatment households include the cash transfer,
whilst the costs of the sampled control households only include identification, enrollment, and
interviewing costs. There is a fixed cost per cluster, representing the costs of transporting the

interviewing field team between clusters, which is the same in treatment and control clusters.

4.3 Heterogeneous Variable and Fixed Costs per Cluster

Another prominent example of Cluster Randomized Control Trials in which treatment observa-
tions are much more expensive than control ones are graduation programs, in which extremely
poor individuals are given a very large transfer, typically including a productive asset, training,

and temporary income support, combined with access to financial services.”

5 Results

In this section, we report the sample size estimates for the three examples outlined in the
previous section. The reported sample size estimates are for a double-sided test of means at
5% significance. We set an effect size § of 0.25, and a standard deviation, o, of 1, which is just
above what Cohen denoted as a small effect size (Cohen, 1988). In Appendix A.1l, we present
the results of a simulation exercise that confirms the validity of the power calculations given for

each of the empirical examples below.

5.1 Optimal Sample Size Allocations

Table 1 reports our sample size estimates of the school grant program in which the cluster
fixed cost is much larger in treatment than control clusters (fi > fo) but the within cluster
variable cost is the same (v; = vg = v). Column 2 of Table 1 reports the estimates for our
benchmark scenario based on their cost figures (fo = $189, fi = $1776.4). We calibrate the
available budget, 148,841, so that the solution to the unconstrained optima (Panel B) provides

80% power in this benchmark case (column 2).

The optimal number of treatment clusters is much smaller than the number of control clusters
(kg = 164.15, kT = 53.54), which reflects the fact that treatment clusters are much more expen-
sive because their fixed cost includes the school grant. Interestingly, to partially compensate
for this, the number of sampled individuals is much larger in treatment than control clusters,
m] = 22.65 > m{ = 7.39,. Hence, we find that kj > k] but my < mj. The same insights hold
for column 1 and 3, which assume smaller and larger values respectively for fi.

Table 2 reports our sample size estimates of the cash transfer program, in which the cost per

individual in the treatment arm is much higher than in the control because of the cash transfer

9See, for instance, Banerjee et al. (2015) and Bandiera et al. (2017).
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Table 1: Heterogenous Fixed Costs per Cluster - School Grant Program

(1) (2) ®3)

Variable cost (v) 9.36 9.36 9.36
Fixed cost Control ( fo) 189 189 189
Fixed cost Treatment (f1) 1,000.0 1,776.4 3,000.0
Available Budget ($) 148,841 148,841 148,841
A.) Equal allocation

ko=Fki=k 105.02 66.25 42.12
mo=mi =m 12.19 15.02 18.41
Power 0.881 0.715 0.529
B.) Optimal allocation

ko 195.31 164.15 137.78
k1 84.91 53.54 34.58
mo 7.39 7.39 7.39
mi 17.00 22.65 29.44
Power 0.916 0.800 0.651
Power Improvement vs Approach A 0.035 0.085 0.122
Value of Improvement vs Approach A ($) 19,428 32,736 46,219
Value of Improvement as Percent of Budget 13.1% 22.0% 31.1%

Notes: The values for number of individuals per cluster (m) and number of clusters (k) are those that achieve 80% power
at 5% significance given i.) the cost parameters specified in the top 3 rows and ii.) the available budget. Other assumed
parameters: effect size 0.25, standard deviation 1, intra-cluster correlation (p) = 0.27. We calculate the Value of the
improvement vs Approach A by adjusting k in panel A in order to achieve the same power as calculated in Panel B, and
then calculating the budget required to pay for this larger value of k.

(v1 > vp), but the fixed cost per cluster is the same (f; = fo = f). As expected, in Panel B, the
number of individuals in the control arm is larger than in the treatment arm. Given the cost

structure, in this case the number of clusters is the same in treatment as control arms.

Table 3 reports the results for the graduation example, in which both the fixed cost per cluster,
and the variable cost per individual within cluster are larger in the treatment than the control
arm. As expected, the number of control clusters is much larger than the number of treatment
clusters, but interestingly, in columns (1) to (3) there are more individuals in treatment clusters
than in control clusters, despite the unit cost being higher in treatment than control clusters.
Intuitively, there are so many more control than treatment clusters, that in order to partially
offset this, it is optimal to sample more treatment individuals per cluster despite each being
more expensive than their control counterparts. In column (4), in which fy is four times that of
column (2), the difference between the number of control and treatment clusters is smaller than
in the other columns (although still kg > ki), and in that case we find, contrary to the other

columns, that mg > m;.

5.2 Power Gains

We compare the power that we obtain with the allocations in the panels B of Tables 1 to 3,
with the power that would be obtained with a balanced design (same number of clusters and
individuals per cluster in treatment and control) as reported in the panels A of the same tables.
In the panels A, we use the average of my and mg of Panel B as the m in Panel A, and compute
the number of clusters that will exhaust the budget. We then use the resulting number of

clusters and individuals per cluster to compute the power provided by each allocation.
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Table 2: Heterogenous Variable Costs per Cluster - Unconditional Cash Transfer

(1) (2) ®3)

Fixed cost (f) 250.00 250.00 250.00
Variable Cost Control (vo) 100 100 100
Variable cost Treatment (v1) 500.0 854.0 1,200.0
Available Budget ($) 260,855 260,855 260,855
A.) Equal allocation

ko=Fki=k 74.69 53.10 41.58
mo=mi =1m 4.99 4.63 4.44
Power 0.872 0.714 0.590
B.) Optimal allocation

ko 95.54 81.43 72.93
k1 95.54 81.43 72.93
mo 6.89 6.89 6.89
mi 3.08 2.36 1.99
Power 0.908 0.800 0.708
Power Improvement vs Approach A 0.036 0.086 0.117
Value of Improvement vs Approach A ($) 32,940 57,422 75,500
Value of Improvement as Percent of Budget 12.6% 22.0% 28.9%

Notes: The values for number of individuals per cluster (m) and number of clusters (k) are those that achieve 80% power
at 5% significance given i.) the cost parameters specified in the top 3 rows and ii.) the available budget. Other assumed
parameters: effect size 0.25, standard deviation 1, intra-cluster correlation (p) = 0.05. We calculate the Value of the
improvement vs Approach A by adjusting k in panel A in order to achieve the same power as calculated in Panel B, and
then calculating the budget required to pay for this larger value of k.

The benchmark cost estimates for each example are given in columns (2) of Tables 1 to 3.
The optimal allocation computed for those benchmark cost estimates give a power of 0.8 by
design. However, the power provided by panel A is much lower, around 0.71 in Tables 1 and 2,
and even much lower 0.61 in Table 3. Hence, with a fixed budget, our approach can lead to very
substantial gains in power with cost parameters that are typical of experiments in economics.

The columns other than (2) in Tables 1 to 3 provide the corresponding estimates for cost
estimates different from the benchmark ones. The larger the difference between the costs, the
larger the gains in power that our approach can lead to. For instance, the difference in power
is only of 0.035 in column (1) of Table 1 where the difference in fixed costs (f1 vs. fp) is much
smaller than in column (2), but the gain in power is much higher, 0.122, in column (3) where
the difference in costs is much larger. In all the comparisons, the budget is kept the same across
the columns of each Table.

In Figure 1 we present respective power curves for both equal and optimal alloactions at
different values of the ICC. These figures confirm that the power gains we document from our
optimal allocation approach for specific ICCs in Tables 1, 2, and 3 are valid for a wide range of
1CCs.

5.3 Valuing the Improvement in Power

An alternative way to conceptualize the improvement in power using the approach we develop
in this paper compared to the simple, balanced design is to ask the following: How much larger
a budget would be required to achieve the power attained using our approach (Panel B) if one
implemented a balanced design (Panel A)? This is a useful alternative approach as it enables us
to better grasp the value of our approach.

To answer this question, we rearrange the Panel A power formula to solve for k&, the number
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Table 3: Heterogenous Fixed and Variable Costs per Cluster - Graduation Program

(1) (2) ®3) (4)

Variable Cost Control (vo) 100 100 100 100
Variable cost Treatment (v1) 2,150 2,150 2,150 2,150
Fixed cost Control (fo) 125 250 500 1000
Fixed cost Treatment (f1) 18,000 18,000 18,000 18,000
Available Budget ($) 994,017 994,017 994,017 994,017
A.) Equal allocation

ko=ki =k 26.30 24.73 22.77 20.41
mog =mi =m 8.74 9.75 11.18 13.20
Power 0.605 0.609 0.609 0.603
B.) Optimal allocation

ko 227.36 158.88 110.52 76.39
k1 18.95 18.72 18.42 18.01
mo 4.87 6.89 9.75 13.78
mi 12.61 12.61 12.61 12.61
Power 0.810 0.800 0.785 0.764
Power Improvement vs Approach A 0.205 0.191 0.176 0.162
Value of Improvement vs Approach A ($) 568,358 509,039 446,325 385,297
Value of Improvement as Percent of Budget 57.2% 51.2% 44.9% 38.8%

Notes: The values for number of individuals per cluster (m) and number of clusters (k) are those that achieve 80% power
at 5% significance given i.) the cost parameters specified in the top 3 rows and ii.) the available budget. Other assumed
parameters: effect size 0.25, standard deviation 1, intra-cluster correlation (p) = 0.05. We calculate the Value of the
improvement vs Approach A by adjusting k in panel A in order to achieve the same power as calculated in Panel B, and
then calculating the budget required to pay for this larger value of k.

of clusters, and input a t-statistic associated with the value of power attained in Panel B —
denoted tifi — to yield 12:,4:

2
g *,B o1+ (m B ]-)P
ka=20t7" +t%)25—2T

(16)

This is the value of k under a balanced design that attains the power achieved in Panel B
in the respective table. If we enter this value of k — that is k4 — into the cost function, keeping
m equal to the value found in panel A — m 4 — we can calculate a new budget. Subtracting
this new budget from the original yields the penultimate row in Tables 1-3, the value of the
power improvement in dollars. In all three of our archetypal examples, the value of the power
improvement is sizeable. Expressed in terms of the original budget, these are respectively 22%,
23% and 54% for the three case studies. Put differently, the value of our approach is akin to
using the standard, balanced approach but being granted a budget of between 22% to 54%

larger.

6 Conclusion

In cluster RCTs, researchers commonly use a balanced design, in which the same number of
treatment and control clusters and units within treatment and control clusters are sampled.
However, in many cluster RCTs, treatment clusters and/or sampled units within treatment
clusters are more expensive than control ones because the former incorporate the costs of imple-
menting the intervention. Under these cost differences, the researcher can maximize the power
subject to a cost constraint (or minimize the costs subject to achieving a pre-determined level

of power) by allowing the number of clusters and number of sampled units within clusters to be
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Figure 1: Calculating Power for Various Values of the ICC

- © @
l\. m
O). .
wn
o
LQ .
o ) )
= = =
(o] (o] [}
o o o
0
~ | )
l\. i
‘t 4
0 -
o ©
T T T T T T T T T T T T d" N
15 2 25 3 35 4 05 1 15 2 25 3 05 1 15 2 25 3
ICC (p) ICC (p) ICC (p)

Equal Allocation of Clusters and Individuals
= QOptimal Allocation of Clusters and Individuals

Equal Allocation of Clusters and Individuals
= QOptimal Allocation of Clusters and Individuals

Equal Allocation of Clusters and Individuals
= Optimal Allocation of Clusters and Individuals

(a) Heterogeneous Fixed (b) Heterogeneous Variable (c) Heterogeneous Fixed and

Costs Costs Variable Costs

Notes: In these figures, we present power curves for our baseline specifications from each table — Column 2 from Table 1,
Column 2 from Table 2 and Column 2 from Table 3. With the exception of the ICC, we fix all parameters as presented in

the respective tables. In each figure, we mark the baseline value of the ICC with a thin, gray, vertical line.

different in treatment and control. We develop methods to optimally compute these four sample
parameters, contributing to the existing literature by allowing for full flexibility of the solution.
We focus the paper on the primal problem of maximizing power subject a cost constraint, but
our method can also be applied to the dual problem of minimizing costs subject to a level of
power, as we do in the Appendix.

To illustrate the relevance of our methods, we apply them to three prominent examples from
the development economics literature, each with a specific cost structure: one in which the fixed
cost per cluster are different between treatment and control, but the unit costs are the same;
another one in which the unit cost per cluster are different between treatment and control, but
the fixed cluster costs are the same, and one in which both unit and fixed costs are different in
treatment and control.

Using realistic cost estimates, we find substantial power gains with respect to the balanced
design, of between 8.5 and 19 percentage points. As expected, we observe some compensation
between clusters and units per cluster. For instance, if it is optimal to have more control than
treatment clusters, then the number of units per treatment cluster may be larger than that of
controls. However, this is not necessarily the case when both the fixed cost per cluster and
the unit cost is higher in treatment than control. In such cases, depending on the specific cost

parameters, it might be optimal to have more control clusters, as well as more units sampled
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per control cluster.

We obtain our results using realistic cost estimates based predominantly on the examples
and reasonable assumptions on parameters which are unknown to us, and comparing the power
of our method with the one of the balanced design. It should be noted that we do not replicate
all the features of the studies from which we derive our examples, and hence our results should
not be understood as what the previous studies could have gained, but more like benchmark
power gains that can be obtained in a typical cluster RCT. We further consider the benefits of
our approach by attaching a monetary value to the power improvements. We compute that to
obtain the same power as we do with our method, a balanced design with the same number of
treatment and control clusters would need to increase the budget by between 22% to 54%.

There might be reasons why the researcher might want to deviate from the optimal solution
to maximize power. For instance, a lower bound in the number of units per cluster might help
to prevent a cluster ending up with no data due to attrition, and a lower bound in the number of
clusters per treatment arm might be necessary to ensure balance between treatment and control,
as well as correct inference based on asymptotic standard errors. Such lower bounds can easily
be handled by our methods, and in any case, the unconstrained solution given here would serve

as a useful benchmark.9

1%Reducing the wedge between the number of treatment and control clusters can help to reduce bias when the
number of units per cluster vary and outcomes are correlated with cluster size (Middleton, 2008).

15



References

BAIRD, S., J. A. BoHREN, C. McINTOSH, AND B. OzLER (2018): “Optimal Design of Ex-
periments in the Presence of Interference,” The Review of Economics and Statistics, 100,
844-860.

BANDIERA, O., I. BARANKAY, AND I. RASUL (2011): “Field Experiments with Firms,” Journal
of Economic Perspectives, 25, 63—82.

BANDIERA, O., R. BURGESS, N. Das, S. GurLesci, I. RasuL, AND M. SULAIMAN (2017):
“Labor Markets and Poverty in Village Economies,” The Quarterly Journal of Economics,
132, 811-870.

BANERJEE, A., E. DUFLO, N. GOLDBERG, D. KARLAN, R. OsEl, W. PARIENTE, J. SHAPIRO,
B. THUYSBAERT, AND C. UDRY (2015): “A multifaceted program causes lasting progress for

the very poor: Evidence from six countries,” Science, 348.

BANERJEE, A. V., S. CHASSANG, S. MONTERO, AND E. SNOWBERG (2020): “A Theory of

Experimenters: Robustness, Randomization, and Balance,” American Economic Review, 110,
1206-30.

BurLig, F., L. PREONAS, AND M. WOERMAN (2020): “Panel data and experimental design,”
Journal of Development Economics, 144, 102458.

BURTLESS, G. (1995): “The Case for Randomized Field Trials in Economic and Policy Re-

search,” Journal of Economic Perspectives, 9, 63—84.

BurTon, K. S., J. P. A. Ioannipis, C. MOKRyYSz, B. A. Nosek, J. FLinT, E. S. J.
ROBINSON, AND M. R. MUNAFO (2013): “Power failure: why small sample size undermines

the reliability of neuroscience,” Nature Reviews Neuroscience, 14, 365-376.

CARNEIRO, P., S. LEE, AND D. WILHELM (2019): “Optimal data collection for randomized

control trials,” The Econometrics Journal, 23, 1-31.

CHASSANG, S., G. PADRO I MIQUEL, AND E. SNOWBERG (2012): “Selective Trials: A
Principal-Agent Approach to Randomized Controlled Experiments,” American Economic Re-
view, 102, 1279-1309.

CoCHRAN, W. (1963): Sampling techniques, New York: Wiley, 2 ed.

COHEN, J. (1988): Statistical power analysis for the behavioral sciences, Lawrence Erlbaum

Associates.

CORANA, A., M. MARCHESI, C. MARTINI, AND S. RIDELLA (1987): “Minimizing multimodal

functions of continuous variables with the “simulated annealing” algorithm,” ACM Transac-
tions on Mathematical Software (TOMS), 13, 262-280.

DurLo, E. (2006): “Field Experiments in Development Economics,” Tech. rep., MIT.

(2020): “Field Experiments and the Practice of Policy,” American Economic Review,
110, 1952-73.

16



DurLo, E., R. GLENNERSTER, AND M. KREMER (2007): “Using Randomization in Devel-
opment Economics Research: A Toolkit,” Elsevier, vol. 4 of Handbook of Development Eco-
nomics, chap. 61, 3895 — 3962.

GELMAN, A. AND J. CARLIN (2014): “Beyond Power Calculations: Assessing Type S (Sign)
and Type M (Magnitude) Errors,” Perspectives on Psychological Science, 9, 641-651, pMID:
26186114.

GLENNERSTER, R. AND K. TAKAVARASHA (2013): Running Randomized Fvaluations: A Prac-

tical Guide, Princeton University Press.

GOFFE, W. L. (1996): “SIMANN: A Global Optimization Algorithm using Simulated Anneal-

ing,” Studies in Nonlinear Dynamics & Econometrics, 1.

GorrE, W. L., G. D. FERRIER, AND J. ROGERS (1994): “Global optimization of statistical

functions with simulated annealing,” Journal of Econometrics, 60, 65-99.

Hann, J., K. HiIraANO, AND D. KARLAN (2011): “Adaptive Experimental Design Using the
Propensity Score,” Journal of Business & FEconomic Statistics, 29, 96-108.

HAMERMESH, D. S. (2013): “Six Decades of Top Economics Publishing: Who and How?”
Journal of Economic Literature, 51, 162-72.

HAUSHOFER, J. AND J. SHAPIRO (2016): “The Short-term Impact of Unconditional Cash Trans-

fers to the Poor: Experimental Evidence from Kenya,” The Quarterly Journal of Economics,
131, 1973-2042.

HAusMmAN, J. AND D. WISE, eds. (1985): Social Experimentation, University of Chicago Press.

HECKMAN, J. J. AND J. A. SMITH (1995): “Assessing the Case for Social Experiments,” Journal
of Economic Perspectives, 9, 85-110.

ToanNiDIs, J. P. A. (2005): “Why Most Published Research Findings Are False,” PLoS
Medicine, 2.

IoannNiDIS, J. P. A., T. D. STANLEY, AND H. DOUCOULIAGOS (2017): “The Power of Bias in
Economics Research,” The Economic Journal, 127, F236-F265.

KARLAN, D. AND J. APPEL (2016): Fuailing in the Field: What We Can Learn When Field

Research Goes Wrong, Princeton University Press.

LEvITT, S. D. AND J. A. L1sT (2009): “Field experiments in economics: The past, the present,

and the future,” European Economic Review, 53, 1 — 18.

LisT, J. AND I. RAsuL (2011): “Field Experiments in Labor Economics,” Elsevier, vol. 4A,
chap. 2, 103-228, 1 ed.

LisT, J., S. SADOFF, AND M. WAGNER (2011): “So you want to run an experiment, now what?
Some simple rules of thumb for optimal experimental design,” Ezperimental Economics, 14,
439-457.

17



LisT, J. A. (2011): “Why Economists Should Conduct Field Experiments and 14 Tips for
Pulling One Off,” Journal of Economic Perspectives, 25, 3-16.

Liu, X. (2003): “Statistical Power and Optimum Sample Allocation Ratio for Treatment and
Control Having Unequal Costs per Unit of Randomization,” Journal of Educational and Be-
havioral Statistics, 28, 231-248.

Lvuo, R., G. MILLER, S. ROZELLE, S. SYLVIA, AND M. VERA-HERNANDEZ (2019): “Can
Bureaucrats Really Be Paid Like CEOs? Substitution Between Incentives and Resources
Among School Administrators in China,” Journal of the European FEconomic Association, 18,
165-201.

McKENZzIE, D. (2012): “Beyond baseline and follow-up: The case for more T in experiments,”
Journal of Development Economics, 99, 210 — 221.

MIDDLETON, J. A. (2008): “Bias of the regression estimator for experiments using clustered
random assignment,” Statistics & Probability Letters, 78, 2654—2659.

Nawm, J.-M. (1973): “Optimum Sample Sizes for the Comparison of the Control and Treatment,”
Biometrics, 29, 101-108.

OLKEN, B. A. (2020): “Banerjee, Duflo, Kremer, and the Rise of Modern Development Eco-

nomics,” The Scandinavian Journal of Economics, 122, 853—-878.

SHEN, Z. AND B. KELCEY (2020): “Optimal Sample Allocation Under Unequal Costs in Cluster-
Randomized Trials,” Journal of Educational and Behavioral Statistics, 45, 446-474.

TEERENSTRA, S., S. ELDRIDGE, M. GRAFF, E. DE Hoopr, AND G. F. BorM (2012): “A
simple sample size formula for analysis of covariance in cluster randomized trials,” Statistics
in Medicine, 31, 2169-2178.

WACHOLDER, S., S. CHANOCK, M. GARCIA-CLOSAS, L. E. GHORMLI, AND N. ROTHMAN
(2004): “Assessing the Probability That a Positive Report is False: An Approach for Molecular
Epidemiology Studies,” JNCI: Journal of the National Cancer Institute, 96, 434-442.

XIANG, Y., S. GUBIAN, B. SUOMELA, AND J. HOENG (2013): “Generalized Simulated An-
nealing for Global Optimization: The GenSA Package,” The R Journal, 5, 13—-28.

18



Appendix

A Additional Results

A.1 Simulation Results

Table A1 compares the power that we obtain as the solution to (6) and report in panel B of
Tables 1 to 3, with the power obtained when we simulate 10,000 times the DGP (1) under the
sample allocations also reported in panel B of the same tables. In order to compute the power
by simulation, we require the number of clusters and the number of individuals per cluster to be
integers. The last (second last) column of Table A1 reports the simulated power by rounding up
(down) the values of ki, ko, m1, mo reported in panel B of Tables 1 to 3. The power reported
in the panels B of Tables 1 to 3, which we also report in the third last column of Table Al,
is between (or extremely close to) the simulated power obtained by rounding up and rounding
down the sample.!! This comparison provides reassurance about the validity of the methods

that we have developed.

Table Al: Power Simulations

(1) (2) 3) (4) (5) (6) (7)
Optimal number of Clusters and Individuals Simulated Power
Scenario ko k1 mo mi Power When ko, When ko,
ki, mo, m1 ki, mo, m1
are are

Rounded Rounded
Downwards Upwards

A.) Heterogenous Fixed Costs per Cluster (Table 1)

1 195.31 84.91 7.39 17.00 0.916 0.913 0.927
2 164.15 53.54 7.39 22.65 0.800 0.802 0.809
3 137.78 34.58 7.39 29.44 0.651 0.655 0.660
B.) Heterogenous Variable Costs per Cluster (Table 2)

1 95.54 95.54 6.89 3.08 0.908 0.887 0.940
2 81.43 81.43 6.89 2.36 0.800 0.738 0.858
3 72.93 72.93 6.89 1.99 0.708 0.493 0.710
C.) Heterogenous Fixed and Variable Costs per Cluster (Table 3)

1 227.36 18.95 4.87 12.61 0.810 0.785 0.828
2 158.88 18.72 6.89 12.61 0.800 0.778 0.817
3 110.52 18.42 9.75 12.61 0.785 0.770 0.815
4 76.39 18.01 13.78 12.61 0.764 0.763 0.808

Notes: Columns 1-5 replicate the key values from panel B of Tables 1, 2, and 3. These are provided as reference for the
simulation results. For the simulation results we simulate data to match the DGP presented in Equation (1). For every
scenario, we run 10,000 simulations and report the mean power achieved from these runs. For the simulation, we require
the number of individuals and clusters to be integer values. Given that the optimal numbers of clusters and individuals
are non-integer values we present two cases. Column 6 shows the case where all values are round down to the nearest
integer and column 7 shows the case where all values are rounded up.

"Note, for panel B, that the large wedge in the simulated power between rounding the sample up and down is
because m; is relatively small, so it makes a big difference whether we round it up or down.
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A.2 Justification for Parameter Values Used in the Empirical Examples
A.2.1 Heterogeneous Fixed Costs per Cluster

For our example on heterogenous fixed costs per cluster, based on the school grant programme
based on Luo et al. (2019), we used their their budget data to estimate the fixed cost per
control school (fy) to be $189. The fixed cost of a treatment school (f;) includes the same
transportation cost of $189 plus a school grant of $1,587 giving a total of $1,776.12 The
cost per each sampled student includes the interviewing costs (field team cost of administering
the questionnaires, questionnaire printing costs, as well as costs of measuring student blood
hemoglobin concentration through finger-prick blood samples.) Using their budget data, we
estimate the cost per sampled child, v, to be $9.36. Based on Luo et al. (2019), we estimate the

intra cluster correlation coefficient, p to be 0.27.

A.2.2 Heterogeneous Variable Costs per Cluster

For our example on unconditional cash transfers in which the variable costs per cluster are higher
in treatment than control clusters, we use the average transfer amount ($709) and transfer fee
of ($45) as per (Haushofer and Shapiro, 2016). We do not have data on the cost of interviewing
households in this setting, but we will assume it is $100. Hence, the cost of a control household
is $100, and the cost of a treatment household is $854 (=709+45+100).!3 The fixed costs per
cluster is the same in treatment and control and equal to $250 (our own assumption on the
transportation cost per cluster). We assume the intra cluster correlation coefficient, p to be
0.05.

A.2.3 Heterogeneous Variable and Fixed Costs per Cluster

For our example on both heterogeneous variable and fixed costs per cluster, inspired in the
graduation programme, we use the costs reported in Banerjee et al. (2015) as a guide. We
assume that the value of the transfer per household is $800. Banerjee et al. (2015) also report
that the supervision costs associated to this type of programs are very important. A share of
these supervision costs will be fixed at the cluster level: office rental costs, IT equipment, etc.
As we do not have information on what share of the total supervision costs is fixed and what is
variable, we make the assumption that half of cluster supervision costs are fixed ($ 17477), and
half are variable ($ 1250 per household). We also make the assumption that recruitment and
interviewing costs are $100 per household, which are the same in treatment and control, and
that the transportation cost of each interviewing team to a cluster amount to $250. Hence, our
assumptions are that vg = 100, v; = 100 4+ 800 4+ 1250 = 2150, fo = 250, f1 = 250 + 17,477 =
17,727 =~ 18,000. We assume the intra cluster correlation coefficient, p to be 0.05.

12The school grant was computed as 48 RMB per student in the school, and the average school has 210 students.
Exchange rate $1 = 6.3 RMB.

13We ignore here that some households in treatment clusters might be sampled but not given the cash transfer
to estimate the size of the spillovers associated to the cash transfer.
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B Optimal Sample Size Determination - Minimizing Costs

In this section, we repeat large swathes of Section 3, but here focus on minimizing total costs, or
budget, subject to a given power. This approach may be of interest to the researcher wishing to
place a competitive budget for a grant application/evaluation tender. In order to best present
this approach, we provide all the necessary detail that one would need in order to work through
the material independently of what is in the body of the text, hence the elements of repitition.

The power, k, of the two-tailed test at « significance for the null hypothesis that Hy: d =0

when using the post estimator, § is given by:

5
1=k =Txk1(—F—=—te k-1) (17)
var(9)

where Tk _1 is the cumulative distribution function of the ¢ -distribution with K — 1 degrees of

freedom (DoF), and the variance of §4 is given by:

; 2[1+<m0—1>p+1+<m1—1>f)], (18)

var(d) = o — —

A researcher will want to optimize the design of the cluster RCT by determining the sample
that minimizes the cost conditional on achieving a pre-specified level of power. We assume that
the costs of the RCT are given by:

C = (fo+vomo)ko + (f1 +vimi)ki, (19)

where kg and k1 are the respective numbers of control and treatment clusters, fy and fi represent
the fixed costs per control and treatment cluster respectively, mg and mq are the number of
sample units per control and treatment cluster, and vy and v represent the variable costs per
control and treatment units respectively.

The researcher who wants to minimize costs subject to attaining a level of statistical power,

k, will want to solve:

min [(fo +vomo)ko + (f1 + vima)ki]
{mo,m1,ko,k1}
s.t.
0
11—k = TK—l(iA - t%,K—l) (20)
var(d)

For mathematical convenience, it is useful to rewrite the constraint solving for 62, and hence the

optimization problem will be:

min [(fo + vomo)ko + (f1 + vima)ki]
{mo,m1,ko,k1}
s.t.
52 = (tay2.x -1 + ti—n ik —1)*var(d) (21)

In its general form, the constrained optimization problem above does not have close form so-

lutions. However, it can be solved numerically using robust numerical optimization methods
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such as Simmulated Annealing (Corana et al., 1987; Goffe et al., 1994; Goffe, 1996; Xiang et al.,
2013).1

B.1 Heterogenous Fixed Costs per Cluster - A Closed Form Solution

It is possible to obtain closed form solutions to the optimization problem in (21) under the
condition that the individual variable costs are homogenous vg = v; = v, and the number of
units to sample within the clusters are equal in treatment and control clusters, and exogenously
given (moy =mj; =m)

In this more restricted scenario, we can rewrite the cost function as C = (fo +vm)ko + (f1 +

vm)ky = (fo +vm)ko + (f1 +vm)k;, giving the optimization problem as:

min (fo +vm)ko + (f1 + vm)ky (22)
{ko,k1}
s.t.
P =l o m= D) (4 ) (23)
m \ ko k1

where the only unknowns are kg and k; because the number of units to be sampled per each
cluster is exogenously given by m. Note that the constraint is the same as the constraint in
(21) but where the conditions (mg = m; = m) and (vo = v; = v) has been substituted in the

formulae for V(0) in (18).

The solution to the optimization problem yields the following optimality condition,

]{,‘1 _ (fo + vm)

ko (f1 +vm) (24)

Using the squared MDE formula (23), we can write the optimal values of ky and k; as

functions of the model parameters:

= (taga + 1102021+ (m— D) - (W” Fom) 4V, “””’”) ad (25

m 6 (fo+vm)
k= (tajs +ti—e)?0?(1+ (m — 1)P)%512 <\/(f0 i ”T}l‘i\v/qgl + vm)) (26)

We can now present an expression for the minimum total cost, C*, required in order to
achieve a power of 1 — 3 with a given value of §, by substituting the relations in equations (25)
and (26) into the cost function C' = (fo + vm)ko + (f1 + vm)ky:

O = (tapo + 10t (m = Vo) (Vo Fom) + /(v om)) (@0)

Note that the above closed form solutions were obtained using the assumption that the
number of units to be sampled within each cluster, m, was exogenously given. In practice,

it is straightforward to circumvent this assumption by doing a grid search on m, that is, the

MYWe provide an R package Optimal.sample to perform this optimization and obtain the optimal sample. In
order to avoid optimizing over the degrees of freedom in the ¢ distribution, we initialize the algorithm using the
Normal distribution to obtain an initial estimate of the total number of clusters, which we use to repeat the
optimization using the t-distribution. We repeat this process until we achieve convergence.
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optimal values of ky and k; can be computed for different values of m, and choose the one that
minimizes the costs. Hence, the actual important assumption for this special case to be useful

is that mo=mj.

B.2 Heterogenous Variable Costs per Cluster - A Closed Form Solution

In this subsection, we describe the example of a cluster RCT in which the cost function is given
by C = (f+vomo)ko+ (f+vimi)kis = 2fk+vomok+vimik, that is, where fixed costs per cluster
are equal in treatment and control, but variable costs are different. In addition we assume that
the number of clusters are equal across treatment arms (ko = k; = k).

In this case, we write the constrained optimization problem as:

min 2fk + vomok + vim1k (28)
{mo,m1}
s.t.
1 /1 -1 1 -1
5 = (tayp +ti—x)?0’ - ( Tmo—1p 1 (m )p> : (29)
k mo mi
The solution to the optimization problem yields the following optimality condition,
mo_ % (30)
mo U1

Using the squared MDE formula (29), we can write the optimal values of kg and k; as functions

of the model parameters:

(tap + 11" (') ¢+ i
my = < ) and (31)
52 — (ta/g +t1_x)2%02 <2?p> Vo
(tap + 1= (572) (i 4 for
mi = i ( ) (32
52 = (tas + t1-x)20? (?P) G

Finally, we can write down an expression for the minimum total cost, C*, required in order
to achieve a power of 1 — 8 with a given value of §, by substituting the relations in equations
(31) and (32) into the cost function C' = 2fk + vomok + vimik:

(taj2 + ti—r)?0?(1 = p)(y/vo + /v1)*

C*=2fk+
/ 2 — (tna + t1n)?0*(2)

(33)

Note that the above closed form solutions were obtained using the assumption that the
number of clusters, k, was exogenously given. In practice, it is straightforward to circumvent
this assumption by doing a grid search on k, that is, the optimal values of my and m; can be
computed for different values of k, and choose the one that minimizes the costs. Hence, the

actual important assumption for this special case to be useful is that kg = k.

B.3 Results

Here we report the sample size estimates for the same three case studies as we do in Section 4.

The reported sample size estimates are for a double-sided test of means at 5% significance, and
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for a power of 80%. We set an effect size § of 0.25, standard deviation o of 1, and a intracluster
correlation of 0.27 for the first example (school grant) but a smaller one, 0.05, for the other two.
We report the sample size results with decimals although in practice they will be need to be

integers, and the researcher will need to adjust them.

B.4 Optimal Sample Size Allocations and Cost Savings

Having discussed the three case studies in detail in the main body of the text, in this section we
focus predominantly on the cost savings from our approach (found in Panel B of Tables B1-B3)

compared to the non-optimized, equal allocation approach in Panel A.

Table B1: Heterogenous Fixed Costs per Cluster - School Grant Program

(1) (2) 3)

Variable cost (v) 9.36 9.36 9.36
Fixed cost Control (fo) 189 189 189
Fixed cost Treatment (f1) 1,000.00 1,776.40 3,000.00
Target Power 0.80 0.80 0.80
A.) Equal allocation

ko=ki=k 83.68 80.82 78.55
mo=mi=1m 12.19 15.02 18.41
Total Cost ($) 118,600 181,577 277,578
B.) Optimal allocation

ko 138.08 164.15 195.37
k1 60.03 53.54 49.04
mo 7.39 7.39 7.39
mi 17.00 22.65 29.44
Total Cost ($) 105,225 148 841 211,065
Savings vs Approach A ($) 13,375 32,736 66,514
Savings vs Approach A (%) 11.3% 18.0% 24.0%

Notes: The values for number of individuals per cluster (m) and number of clusters (k) are those that achieve 80% power
at 5% significance for the cost parameters specified in the top 3 rows. Other assumed parameters: effect size 0.25,
standard deviation 1, intra-cluster correlation (p) = 0.27.

In Tables B1, B2 and B3, our approach is associated with costs savings of 18%, 18% and 34%
respectively. These percentage saving amounts to large savings in absolute terms, particularly
for graduation-style programs — in Table 3 the absolute saving using approach exceeds half a

million US Dollars for our baseline case.
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Table B2: Heterogenous Variable Costs per Cluster - Unconditional Cash Transfer

(1) (2) 3)
Fixed cost Control (f) 250 250 250
Variable Cost Control (vo) 100 100 100
Variable cost Treatment (v1) 500 854 1,200
Target Power 0.80 0.80 0.80
A.) Equal allocation
ko=ki=k 61.01 64.79 66.95
mo=mi=m 4.99 4.63 4.44
Total Cost ($) 213,058 318,276 420,002
B.) Optimal allocation
ko 69.55 81.43 90.81
k1 69.55 81.43 90.81
mo 6.89 6.89 6.89
my 3.08 2.36 1.99
Total Cost ($) 189,906 260,855 324,803
Savings vs Approach A ($) 23,152 57,422 95,199
Savings vs Approach A (%) 10.9% 18.0% 22.7%

Notes: The values for number of individuals per cluster (m) and number of clusters (k) are those that achieve 80% power
at 5% significance for the cost parameters specified in the top 3 rows. Other assumed parameters: effect size 0.25,
standard deviation 1, intra-cluster correlation (p) = 0.27.

Table B3: Heterogenous Fixed and Variable Costs per Cluster - Graduation Program

(1) (2) (3) (4)
Variable Cost Control (vo) 100 100 100 100
Variable cost Treatment (v1) 2,150 2,150 2,150 2,150
Fixed cost Control (fo) 125 250 500 1,000
Fixed cost Treatment (f1) 18,000 18,000 18,000 18,000
Target Power 0.80 0.80 0.80 0.80
A.) Equal allocation
ko=ki=k 40.25 37.40 34.24 30.94
mo=mi=m 8.74 9.75 11.18 13.20
Total Cost ($) 1521285 1503056 1494770 1506856
B.) Optimal allocation
ko 221.42 158.88 114.63 83.29
k1 18.45 18.72 19.10 19.63
mo 4.87 6.89 9.75 13.78
mi 12.61 12.61 12.61 12.61
Total Cost ($) 968,078 994,017 1030982 1083862
Savings vs Approach A ($) 553,207 509,039 463,788 422,994
Savings vs Approach A (%) 36.4% 33.9% 31.0% 28.1%

Notes: The values for number of individuals per cluster (m) and number of clusters (k) are those that achieve 80% power
at 5% significance for the cost parameters specified in the top 3 rows. Other assumed parameters: effect size 0.25,
standard deviation 1, intra-cluster correlation (p) = 0.05.
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B.5 Simulation Results

As we do in the body of the text, we validate the power we obtain as the solution to (20)
and reported in panels B of Tables B1 to B3, with the power obtained by simulation using the
sample allocations also reported in panel B of the same tables. The power reported in the panels
B of Tables B1 to B3, which we also report in the third last column of Table B4, is between
(or extremely close to) the simulated power obtained by rounding up and rounding down the

sample. This comparison provides reassurance about the validity of the methods that we have

developed.
Table B4: Power Simulations
(1) (2) (3) (4) (5) (6) (7)

Optimal number of Clusters and Individuals Simulated Power
Scenario ko k1 mo mi Power When ko, When ko,
k1, mo, m1 k1, mo, ma

are are
Rounded Rounded
Downwards Upwards

A.) Heterogenous Fixed Costs per Cluster (Table B1)

1 138.08 60.03 7.39 16.9958 0.800 0.804 0.807
2 164.15 53.54 7.39 22.652284 0.800 0.793 0.811
3 195.37 49.04 7.39 29.437589 0.800 0.802 0.813
B.) Heterogenous Variable Costs per Cluster (Table B2)

1 69.55 69.55 6.89 3.082207 0.800 0.785 0.854
2 81.43 81.43 6.89 2.358402 0.800 0.753 0.855
3 90.81 90.81 6.89 1.989556 0.800 0.570 0.805
C.) Heterogenous Fixed and Variable Costs per Cluster (Table B3)

1 221.42 18.45 4.87 12.612287 0.800 0.781 0.828
2 158.88 18.72 6.89 12.612286 0.800 0.790 0.821
3 114.63 19.10 9.75 12.612286 0.800 0.790 0.828
4 83.29 19.63 13.78 12.61229 0.800 0.789 0.816

Notes: Columns 1-5 replicate the key values from panel B of Tables B1, B2, and B3. These are provided as reference for
the simulation results. For the simulation results we simulate data to match the DGP presented in Equation (1). For
every scenario, we run 10,000 simulations and report the mean power achieved from these runs. For the simulation, we
require the number of individuals and clusters to be integer values. Given that the optimal numbers of clusters and
individuals are non-integer values we present two cases. Column 6 shows the case where all values are round down to the
nearest integer and column 7 shows the case where all values are rounded up.
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C Different Formulations of the Variance of the Treatment Ef-
fect

This section presents the equivalence between the variance of the treatment effect in equation
(4) above, and equation Al in the Appendix of Shen and Kelcey (2020), which we specify
with different sample sizes across treatment conditions at all levels. Table C1 below provides a
correspondence between how we define the key parameters, and how Shen and Kelcey (2020) do
SO.

Following Shen and Kelcey (2020), the variance of the treatment effect is:

(1-p)(1-R3)
2 _ : [(1*10)+PTLT] (1 - P) (Cln + 02) + p(c,{nT + Cg) A
v p(1-p) | m (34)

Where the budget function is m = (1 — p)J(e1n + c2) + pJ(cIn® + k). Solving for J in the

budget function, we can write

/= (1 —p)(ein + c2) + p(cfnT + cI) (35)

Substituting equation (35) into equation (34), we can rewrite the variance of the treatment effect

as: R2
(1 - 1+ L=t
2 (1—p)nt+pnT
70~ p(1—p)J (36)

Under the assumption that R? = 0 and R3 = 0 the variance of the treatment effect is given by:

1—
p+ —p—
of = [Gpinrpnr]
p(1—p)J

which, after some algebra, can be rewritten as:

prn’” 4+ (1 = p)[(1 = p)n +pn”]
p(1 —p)nnTJ

oF = (37)
The first step is to show that equation (37) is equivalent to equation (4), using the equivalence
between parameters in Shen and Kelcey (2020) and our work, which we summarize in Table
C1. Subsituting parameters accordingly, we can rewrite equation (37) as a function of our
parameters:

52 = Pmomi+ (1= p)[(1 = p)mo) + pma]

° p(1 — p)ymomaJ

From Table C1 we have that p = k;/J and (1 — p) = ko/J. If we substitute these expressions

into equation (38) we have:

(38)

= p)[%pmo + 5]

FmomyJ

_ pmomy +

73

x>

(1
k1
J
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which after some algebra we can rewritten as:

J+(1—p)lk k
O'g _ pmomziJ + ( p)[ oMo + 1m1] ‘ (39)
mokomlkl

To completely express the variance of the treatment effect in terms of the parameters we use
in this paper, we need to substitute J. From the equivalences presented in Table C1 we have

J = K = ko + k1. Substituting this last expression into equation (39), we get to the expression:

pmomi (ko + k1) + (1 — p)[komo + kima]
m0k0m1k1

of =

Rearranging some terms we have:

moko(pmi + 1 — p) + kimi(pmo + 1 — p)
m0k0m1k1

o2 =

Finally, a bit more of algebra leads us to determine that the variance of the treatment effect in

Shen and Kelcey (2020), expressed in terms of the paramaters we use, is:

1+ (mo—1)p 1+ (m—1)p

40
moko mik1 (40)

of =

Recall, equation (4) is:

(41)

Under the assumption that o2 = 1, equations (40) and (41) are equivalent, which completes this
section, as we show that the variance of the treatment effect in Shen and Kelcey (2020) coincides

with that in this work.

Table C1: Parameter Equivalence Between Shen and Kelcey (2020) and McConnell and Vera-
Hernandez (2023)

) (2)

Parameter Shen and Kelcey (2020) McConnell and
Vera-Hernandez (2023)
Sample units per control cluster n mo
Sample units per treatment cluster nT m1
Total number of clusters J K
Number of control clusters (1-p)J ko
Number of treatment clusters pJ k1
Fixed costs per control cluster Cs fo
Fixed costs per treatment cluster cT f
Variable costs per control cluster Cy Vo
Variable costs per treatment cluster ct v1
Total cost m C

Notes: p is the proportion of clusters to be assigned to the treatment condition in Shen and Kelcey (2020).
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