Going Beyond Simple Sample Size Calculations: a Practitioner’s

Guide

Brendon McConnell and Marcos Vera-Hernandez*

July 30, 2025

Abstract

Basic methods to compute required sample sizes are well understood and supported by
widely available software. However, researchers often oversimplify their sample size cal-
culations, overlooking relevant features of their experimental design. This paper compiles
and systematises existing methods for sample size calculations for continuous and binary
outcomes, both with and without covariates, and for both clustered and non-clustered ran-
domised controlled trials. We present formulae accommodating panel data structures and
uneven designs, and provide guidance on optimally allocating sample size between the num-
ber of clusters and the number of units per cluster. In addition, we discuss how to adjust
calculations for multiple hypothesis testing and how to estimate power in more complex

designs using simulation methods.
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1 Introduction

One of the big challenges in economics has been to estimate causal relationships between eco-
nomic variables and policy instruments. Randomised Controlled Trials (RCT) have become
one of the main tools that researchers use to accomplish this objective (Hausman and Wise,
1985; Burtless, 1995; Heckman and Smith, 1995; Duflo et al., 2007).! More simple RCTs are
usually set up with the objective of estimating the impact of a certain policy or intervention,
while more complex RCTs can be implemented to test the competing hypotheses that explain
a phenomenon (also known as field experiments, see Duflo (2006) and Levitt and List (2009)).

When setting up a RCT, one of the first important tasks is to calculate the sample size that
will be used for the experiment. This is to ensure that the planned sample is large enough to
detect expected differences in outcomes between the treatment and control group. A sample
size that is too small leads to an underpowered study, which will have a high probability of
overlooking an effect that is real. The implications of small sample sizes go beyond that, low
power also means that statistically significant effects are likely to be false positives.? Studies
with samples larger than required also have their drawbacks: they will expose a larger pool of
individuals to an untested treatment, they will be more logistically complex and will be more
expensive than necessary.

Basic methods to compute the required sample size are well understood and supported by
widely available software. However, the sophistication of the sample size formulae commonly
used has not kept pace with the complexity of the experimental designs most often used in
practice. RCTs are usually analysed using data collected before the intervention started (baseline
data) but this is often ignored by the sample size formulae commonly used by researchers,
as is the inclusion of covariates in the analysis. Another departure from the basic design is
that interventions are commonly assessed not just on a single outcome variable but more than
one, creating problems of multiple hypotheses testing that should be taken into account when
computing the required sample size. Depending on the context and specific assumptions, taking
into consideration some of these departures from the basic design will lead to smaller or larger
sample sizes.

The objective of this paper is to provide researchers with a practitioner’s guide —supported
by accompanying software— that enables them to incorporate into their sample size calculations

features commonly present in RCTs but often overlooked in practice. Although most of the

!See Blundell and Costa Dias (2009) and Imbens and Wooldridge (2009) for reviews on non-experimental methods.
2 An intuitive explanation using a numeric example can be found in The Economist (2013) “Trouble at the lab”,
19th October



content is not novel, most of it is dispersedly published in quite diverse notation, making it
difficult for the applied researcher to find the right formulae just at the busy time when he/she
is writing the research proposal that will fund the RCT. We also note that understanding the
sample size implications of different design features can be very useful to design the RCT (what
waves of data to collect, what information to collect, etc.)

The article will include sample size calculations for both continuous and binary outcomes,
starting with the simplest case of individual-level trials, and then cluster randomised trials. We
will also cover how to take into account pre-intervention data, as well as covariates. Along the
paper, we favour simplicity in exposition and attempt to keep the language accessible to the
applied researcher who does not have previous exposure to sample size calculations.

The article has three extensions. The first extension discusses how to choose optimally the
number of clusters vs. number of units within clusters. The second extension explains how
to compute the power using simulation methods, which is useful when there are no existing
formulae for the RCT that is being planned. The third extension shows how to adapt the
sample size computations when several outcomes are used.

An inherent difficulty in using the sample size formulae that we provide in the paper is
that assumptions are needed on some key parameters of the data generating process, which are
not required by the basic formulae. Our view is that the widespread trend towards making
data publicly available, including the data used in academic publications, will definitively help
researchers to find realistic values for the parameters of interest. Moreover, social science journals
might follow the trend set by medical journals on making compulsory for authors to report certain
key estimates which are commonly used in sample size calculations (Schulz et al., 2010).

The paper is organised as follows. Section 2 provides an overview of an example intervention
that will be used throughout the paper, section 3 provides an overview of basic concepts involved
in power calculations, section 4 considers power calculations for continuous outcomes, section 5
focuses on discrete outcomes, section 6 discusses the three extensions and section 7 concludes. In
the Appendices, we provide examples of Stata code to estimate key parameters needed to perform
sample size calculations, and code to compute power through simulation. Spreadsheets and Stata
do files to implement the methods discussed in this article can be obtained from: https://ifs.org.

uk /publications/sample-size-calculators-going-beyond-simple-sample-size-calculations- practitioners.
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2 Overview of an Example Intervention

In this section, we will set up an example that we will use for the rest of the paper. Let’s
assume that we would like to evaluate APRENDE, a fictional job-training program that will
be implemented by the government of EvalualLand. Such government will run a Randomised
Controlled Trial (RCT) to evaluate APRENDE. Our task is to compute the required sample size
for such evaluation. The main outcomes of interest are individual earnings, and the proportion
of individuals who work at least 16 hours a week.

As it will be clear later on, to be able to compute the sample size requirements, we will need
some basic parameters, such as average earnings, the standard deviation of earnings, and the
proportion of individuals that work at least 16 hours a week. We are at the planning stage, so
we have not collected the data yet, and hence we do not know the value of these parameters
for our target population. We may use previous studies that report these parameters in our
context, or in a similar context.

In this case, we have benefited from the availability of a recent labour market survey —the
EvaluaLand National Survey of Earnings— which contains the key variables required for the
sample size calculations for APRENDE.? Specifically, the dataset reports individual earnings,
town of residence, and a covariate that may be used in the analysis. Importantly, the survey is
representative of the target population of APRENDE.

The evaluation of APRENDE may be implemented using either individual-level or cluster-
level randomisation. Under individual-level randomisation, a small number of pilot towns would
first be selected. Within each town, a list of eligible individuals interested in participating
in APRENDE would be compiled, and a lottery would be conducted to determine which in-
dividuals are selected to participate in the programme during the pilot phase and which are
randomised out. Alternatively, a cluster randomised controlled trial (RCT) design could be
employed, whereby towns participating in the evaluation are randomly assigned to either the
treatment or control group. Eligible individuals residing in treatment towns would then be in-
vited to apply for and participate in APRENDE. In this case, the town constitutes the cluster,
as it is the unit of randomisation, even though the data for evaluation would be collected at a
more granular level (i.e., the individual). Common examples of clusters in other contexts include
schools, job centres, and primary care clinics.

One of the main parameters needed to compute the sample size requirements is the effect size,

3This dataset is included in the Supplementary Materials to enable readers to implement the code provided in
Appendix B.



which is the smallest effect of the policy that we want to have enough power to detect. When
considering the effect size for an individual based RCT, we must take into account that it refers
to the comparison in the outcome levels of individuals initially allocated to treatment versus
control. Note that this difference will be diluted by any non-compliance (i.e., individuals initially
allocated to treatment that eventually decide not to participate), and hence we must adjust
the effect size accordingly. For instance, if we think that APRENDE will increase participants’
average earnings in 14,000 but 30% of individuals initially allocated to participate in APRENDE
decide not to take it up, we must plan for a diluted effect size of 9,800 (=14,000*0.7) as this will
take into account the non-compliance rate. McKenzie (2025), published in this issue, discusses
practical strategies to reduce non-compliance.

In a cluster RCT, the relevant comparison is the difference in outcome levels between the
eligible individuals living in treatment towns (irrespective of whether they participated or not)
and the eligible individuals living in control ones (also, irrespective of whether they participated
or not). Because not all eligible individuals living in treatment towns will end up participating,
the coverage rate of the policy must be taken into account when considering the effect size.
Assuming that APRENDE increases participants’ average earnings by 14,000, we should plan
for an effect size of 8,400 (=14,000*0.6) if the coverage rate is expected to 60% (it is expected that
40% of the eligible population living in the treatment towns will not participate in APRENDE,
either because of capacity constraints or because they are not interested).* Of course, the effect
size would have to be even smaller if we think that individuals in control towns can travel
to treatment towns and participate in APRENDE (contamination). For instance, if 10% of
individuals living in control towns could do that, then the planned effect size would have to be

7,000 (= 14,000%(0.6-0.1)).

3 Basic Concepts

One of the most important questions when computing the required sample size for the evaluation
of APRENDE is: what is the smallest effect of the programme on earnings that we want the
study to be able to detect? The answer to this question defines the effect size —often referred
to in the literature as the minimum detectable effect (MDE)— and is denoted by 4.

For those unfamiliar with sample size calculations, this may be a slightly strange concept,

4Conceptually, coverage and compliance are distinct. The coverage rate refers to the proportion of individuals
who choose to enrol in the treatment when it is offered to them, whereas the compliance rate refers to the
proportion of those enrolled who go on to fully participate in the treatment— that is, who adhere to or complete
the intended intervention.



as in order to calculate the sample size for a trial, we need to input the impact we expect the
trial to have. It is common to refer to existing literature in order to get a sense of this effect
size. Of course, the results from previous literature must be contextualised to the study that is
being planned. For instance, the researcher might think that APRENDE should be less effective
than existing studies, maybe because it targets all ages, rather than the youth. Differences
in expected non-compliance and contamination between APRENDE and other existing studies
will also modify the effect size that we will plan for. Nothing precludes the researcher from
conducting sample size calculations with several different values of the effect size to gauge the
sensitivity of the results.

Assessing whether an intervention has a genuine effect on the outcome variable is challenging
because, in practice, we seldom observe outcomes for the entire population of individuals or
clusters assigned to treatment and control. Instead, researchers typically rely on data from a
random sample of each group. Even if the intervention has no effect at the population level,
the sample average of the outcome in the treatment group will usually differ from that in the
control group. This is due to sampling variability —the natural variation in estimates that arises
because each sample captures only a subset of the population, and the specific individuals or
clusters included in the subset will influence the sample mean. The core inferential task is to
determine whether the observed difference in sample means is sufficiently large to suggest a true
difference in population means —attributable to the intervention— or whether it is small enough
to plausibly reflect random variation from the sampling process alone. This is where hypothesis
testing becomes essential. The null hypothesis (Hy) typically states that the population mean of
the outcome is equal across treatment and control groups —implying that the intervention was
on average ineffective. The alternative hypothesis states that the effect of the intervention is §
(the difference in the population mean of the outcome variable between treatment and control,
which we call the effect size).

When conducting the hypothesis test, two possible errors are likely to happen. On the
basis of the sample at hand, and the test carried out, the researcher could reject a true null
hypothesis, that is, to conclude that the intervention was effective when it was not. This type
of “false positive” error is usually called a Type I error (see Table 1). The other possible error
is to conclude that that the intervention had no effect when one exists (fail to reject the null
hypothesis if it is false). This type of “false negative” error is called a Type II error.

The researcher will never be able to know whether a Type I or Type II error is being

committed, because the truth is never fully revealed. But the researcher can design the study as



to control the probability of committing each type of error. Significance, usually denoted by «,
is the probability of committing a Type I error (Prob[reject Hy|Hy true] = «). Commonly, « is
set to equal .05.> This means that when the null is true, we will only reject it in 5% of cases. The
probability of a Type II error, denoted by (3, is the chance of concluding that the intervention
has no effect, when one exists (Prob[fail to reject Ho|H; true] = ). Common values of 3 are
between 0.1 and 0.2.

Power is defined as 1 — 3, that is, Prob[reject Ho|H true]. In our context, power refers to
the probability of detecting an effect of a given size of APRENDE on earnings, conditional on
APRENDE having such an effect. Put more bluntly, power is the probability that a study has
of uncovering a true, non-zero, effect. The researcher would like power to be as high as possible;
otherwise it has a high chance of overlooking an effect that is real. Usually, power of 0.8 or 0.9
are considered high enough (consistent with values of § between 0.1 and 0.2).

In addition to specifying the effect size and the desired levels of significance and power, several
other key parameters are required to compute the sample size. For binary outcome variables,
it is necessary to provide an estimate of the proportion of individuals in the control group who
exhibit the outcome of interest (e.g., who are employed, enrolled in school, or vaccinated). For
continuous outcomes, one must specify the variance of the outcome, denoted 02.5 These values
can typically be obtained from existing household surveys (e.g., the Evalual.and National Survey

of Earnings), previous studies, or from a pilot study, if one has been conducted.

Figure 1: Type I and Type II Errors in Hypothesis Testing

Hy is true Hj is true
Fail to
reject null Correct Type II error
hypothesis
Reject null
T I
hypothesis ype I error Correct

There is an additional input required when calculating power for cluster RCTs. This is the
intracluster correlation (ICC), which is a measure of how correlated the outcomes are within
clusters. This parameter, denoted here as p and defined below, can be estimated from a pilot
survey or based on measures found in the existing literature. This parameter plays an important

role in sample size calculations for cluster randomised trials, and can lead to one requiring much

5Later in the paper, we will discuss testing for multiple outcomces, which will affect the value chosen for a.
5In the binary case, there is no need to specify the variance separately, as it is fully determined by the mean: the
variance of a binary variable equals p(1 — p), where p is the mean of the variable.



larger sample sizes than in the individual level randomisation case.” The reason for this is that
the larger is the correlation of outcomes amongst individuals within clusters, the less informative
an extra individual sampled within the cluster is. Adding an extra cluster of k individuals will

result in greater power rather than including k more individuals across existing clusters.

4 Continuous Outcomes

Here we derive the sample size calculation for the simple case of a RCT in which the treatment,
T, is randomised at the individual level, and the outcome variable, Y, is continuous. This simple
case allows us to focus on the main steps that are necessary to derive the sample size formulae,
and it is useful to give a sense of how the other formulae used throughout this paper are derived.®
Usually, we test whether T had an effect on Y by testing whether the population means of Y are
different in the treatment than in the control group. More formally, if we denote the population
means in the treatment and control groups by w1 and g, respectively, the null hypothesis is Hy:
p1-10=0; and the alternative hypothesis is that the difference in the population means equals
the MDE, Hiy:puq-po=6.

Assume that we have a sample of ng individuals in the control group, and a sample of ny
individuals in the treatment group. We denote by T; = 0 or T; = 1 if individual ¢ is part of the
control or treatment group respectively. To test Hy against Hi, we would estimate the following

OLS regression:”

K:OK‘F/BTZ—FE“

where Y; is the value of the outcome variable (say earnings in the case of APRENDE) and ¢; is
an error term with zero mean and variance o2, which for the time being we assume it is known.
The z-statistic associated with [ is given by the OLS estimate of 8 divided by its standard error,

that is
Y — Yo

b
/1 1
g n70+n71

where Y7 and Y| are the sample averages of Y; for individuals in the treatment and control

7 =

group respectively, and o is the standard deviation of Y;. If the null hypothesis is true, then

p1=pg, and Z follows a Normal distribution with zero mean and variance of one. Hence, the

"Where covariates are included, it is the conditional ICC that will be used in the calculations below. This may
be harder to obtain from previous studies.

8The material in this section is standard of statistical textbooks. In this section, we follow Liu (2013) closely.

9We use a regression framework to keep the parallelism with forthcoming sections, but a t-test for two independent
samples is equivalent.



null hypothesis will be rejected at a significance level of « if Z> 2,/ or Z< —z,/9, where
the cumulative distribution function of the standard Normal distribution evaluated at z,/ is
1—a/2.

As mentioned above, power, denoted by 1 — (3, is the probability of rejecting the null hy-

pothesis when the alternative is correct, that is,

1= B=Pr(Z<—z40U Z 2> 240|H1) = Pr(Z < —24/9|H1) + Pr(Z > 2,/5|H1)

Because the alternative hypothesis is correct, p1-po is no longer zero, but §. Hence, the mean of

Z is no longer zero but /(o / nio + n%) In this case, Pr(Z < —z,/2|H1) is approximately zero,

and hence we have that1?

1-— ﬂ = PT(Z > Za/2‘H1) =1- PT(Z < Za/2|H1).
By substracting the mean of Z under the alternative hypothesis from both sides of the inequality,

we obtain

P S B S
oL+ L oL + L
no ni no ni

Because the left hand side of the inequality now follows a Normal distribution with zero mean

).

and unit variance, it is the case that

0
R1-B = Raj2 — )

1 1

T\ o T
which implies that!!
0
2+ 2q)2 = - -
AV

In the case in which ¢ is unknown and is estimated using the standard deviation in the sample,
then a ¢ distribution with v = ng+mn1 — 2 degrees of freedom must be used instead of the Normal

distribution. In this case, we have that

19See for instance Liu (2013). Note, however, that Liu (2013) defines z,,» such that the cumulative distribution
function of the standard Normal distribution evaluated at z,/2 is /2 instead of 1 — a/2.
"Note that z5 = —z1_5.
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Solving for §, we obtain the expression for the MDE that can be detected with 1 — § power at

t/g +ta/2 =

significance level a:

1 1
= R 1
5= (tg+ tap)oy| oo+ (1)

Assuming equal sample sizes in the treatment and control groups, ng = ni = n, the formula

simplifies, and the required sample size per arm becomes:

n=2ts + ta2)*(5) (2)

As it is clear from expressions (1) and (2), the required sample size depends solely on the
standardised effect size, defined as the ratio of the effect size to the standard deviation of the
outcome, (§). As a result, it is not necessary to specify the outcome’s mean in the absence
of the intervention, nor its variance in absolute terms. This has led to the widespread use
of standardised effect sizes in power calculations, as it allows sample size requirements to be
expressed without reference to the original scale of the outcome variable.?

Finally for this section, we outline the case where variances are unequal, following List et al.
(2011). This case is not very common in practice, as it is difficult a priori to consider how the
treatment will affect not just the mean of the outcomes, but the variance too.'® Under equal

variances, the expression for the MDE, equivalent to (1), becomes:

0'2 02
§=(tg+t 041
(6 +tay2)\ 0+ o

which leads to the following expressions for the optimal sample (see Appendix A for the full

derivation):

12Cohen (1988) popularised benchmark values for standardised effect sizes, suggesting 0.2 for a small effect, 0.5
for a medium effect, and 0.8 for a large effect. Standardised effect sizes can be readily used in standard software
by assuming that the variance of the outcome variable is equal to one.

130n example is the provision of weather-linked insurance to farmers, where we expects the variance of consump-
tion to be lower for the treated individuals. Another example is a migration facilitation programme, where the
treatment group may include a higher proportion of migrants, leading to greater heterogeneity in outcomes (see
McKenzie (2025) for details).
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21 2 2
N*:(tg—i—ta/g) 52< *+*>,

* * *
N :n0+n1,

* * *
ng = 7y y
ny = miN¥,
where mj = 20— and 7] = %, ng (n]) refer to the optimal sample in the control (treatment)

group, and N* refers to the total optimal sample size.'* These expressions imply that a larger
share of the sample should be allocated to the group with the higher variance in the outcome

variable, reflecting its greater contribution to the overall sampling variability.

4.1 Cluster Randomisation

In many cases, the outcome variable is measured at the unit-level (individual, household, firm,...)
but the randomisation takes place at the cluster-level (school, village, firm). This may be driven
by concerns over spillovers within a cluster, whereby unit-level randomisation would lead to
control members outcomes being contaminated by those of treated individuals. In this case the
sample size formula must be adjusted to reflect that observations from units of the same cluster
are not independent, as they may share some unobserved characteristics.

The estimating equation will take the form of:

Yij = o+ BT + ¢j + ugj, (4)

where ¢ denotes units, and j denotes clusters. T} is the treatment indicator, ¢; and u;; are

error terms at the cluster and unit-level respectively. The variances of ¢; and u;; are given by

2

wr

2 42 _ 2
and 0. + o0, =0°.

var(cj) = o2 and var(u;;) = o
To carry out the sample size calculation in the presence of clustering, we require an additional

input; the intracluster correlation or ICC, denoted here as p:

2

C
P=— 2
o; + o

g

The ICC thus gives a measure of the proportion of the total variance accounted for by the
between variance component. The intuition behind the ICC is that the larger the fraction of

the total variance accounted for by the between cluster variance component (o2), the more

The notion of optimality employed here is based on minimising the minimum detectable effect (MDE) subject
to a fixed total sample size. In Subsection 6.1, we consider an alternative optimality criterion: maximising
power subject to a budget constraint.
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similar are outcomes within the cluster, and the less information is gained from adding an extra
individual within the cluster. Proceeding as in the simple case above, and assuming that both
the number of clusters and the number of units per cluster are equal across treatment and control

groups, the expression for the MDE is 1°

()

2 2
mog + o,
mk ’

5% = (ta/g + t5)22 (

where there are k clusters per arm and m units per cluster'®. Using the definition of the ICC,

and rearranging, we arrive at the formula for the total sample per arm:!'”
* * 2 02
n" =m'k" = (ty2 +1ts) 2§(1+(m—1)p). (6)

Comparing equations (2) and (6), the key difference is the term (1 + (m — 1)p), which
is commonly referred to in the literature as either the design effect or the variance inflation
factor (VIF). This term is a consequence of the clustered treatment allocation and leads to
larger required sample sizes. There is another difference between equations (2) and (6): in
the cluster-randomised case, the degrees of freedom for the t-statistic are 2(k — 1), while in
the individually randomised case they are 2(n — 1). This difference is not taken into account
when the sample size for a cluster RCT is computed by first calculating the sample size for an
individually randomised trial and then multiplying it by the design effect. In practice, this will
usually make little difference unless the number of clusters is small. The methods used in this
paper account for the correct degrees of freedom, and hence our results may differ slightly from
those produced by software that does not incorporate this adjustment.

In order to get a sense of the interplay between the ICC and the number of units per cluster,
Table 1 presents required sample sizes for two different values of the MDE, 4, and six different
values of the ICC. For reference, the standard deviation of earnings and the ICC are 126383.5
and 0.042 respectively in the EvaluaLand National Survey of Earnings data.'®

Consider first the upper left quadrant. The case where ICC=0, which represents unit-level

5With clustering, and assuming equal variances for the two groups, the standard error of B takes the form:

2 ot () _ fmiia
k. mk E o mk) mk

'6Tn the clustered case, the degrees of freedom in the ¢ distribution are 2(k — 1).

17To operationalise this formula one can either solve for m as a function of k or solve for k as a function of m. In
the latter case (due to the fact that the degrees of freedom of the t distribution are a function of the number
of clusters (2(k — 1) in the absence of covariates)), it necessary to use an iterative process to ensure that the
correct degrees of freedom (2(k* — 1)) are used to calculate the number of clusters. This issue will be more
pronounced when the number of clusters is small.

8In Appendix B we show how to compute the ICC using Stata.
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randomisation. As the ICC increases, so too does the sample size. The extent of the increase
depends also on m, the other key term in the VIF. For instance, for a p = .03 and m = 60, a
cluster RCT requires almost triple the sample size per arm to that of a unit-level randomisation
equivalent (7004 compared to 2508).

Another way to see this is to consider the upper right quadrant. At low levels of the intra-
cluster correlation, there is a marked decline in the number of clusters per arm as we increase m
(the number of units per cluster). For p = .01, k drops from 274 to 51, 18% of the initial value
as we move from left to right. As the ICC increases, this decline is much shallower. For p = .2
the right-hand value for k is 74% of the initial value. It should be clear from this table that it is
very important to get accurate measures of the ICC. Small differences in the values of the ICC,
such as moving from p =.01 to .03, can have significant impacts on the required sample size,
particularly when m is large.

Finally, comparing the upper and lower panels of Table 1 illustrates the effect of the MDE:
the larger the value of 4, the smaller the sample size required to detect a statistically significant

effect.

4.1.1 Unequal Numbers of Clusters and Units per Cluster

Keeping the same number of clusters and units per cluster in the treatment and control arms is
common practice, as it minimises the total sample size required to achieve a given level of power.
However, there are situations in which departing from this balanced allocation —by allowing for
a different number of clusters and/or a different number of units per cluster in treatment and
control arms— may be advantageous. One example is when implementer’s capacity constraints
limit the number of clusters that can be assigned to treatment. Another is when costs are higher
in treatment than in control clusters, and the goal is either to minimise total cost subject to
achieving a target power level, or to maximise power subject to a fixed budget (see McConnell
and Vera-Herndndez (2022) for precise methods). In the case of unequal allocation, the required
number of treatment clusters (k1) can be computed as a function of the MDE, 4, the number of
control clusters, kg, and the number of units per cluster, m, using the following formula:

(tajo +13)? (M5H%0)
ki = (7)

2 2 ?
0% = (tays + t)? (5% )
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which assumes that the number of units per cluster is the same in the treatment and control
arm. The above expression can also be written in terms of the design effect as:
14+(m—1
(ta/Q + t5)20'2 (%)

kg = . (8)
6% = (taja + tg)%0? (HHI12)

mko

The formula for the number of units per treatment cluster (m;) as a function of the MDE, 0,

the number of units per control cluster, mg, and the number of clusters per arm, k, is given by:

(ta/2 +t5)? (%)

52_(ta/2+tﬂ)2 <2zg+ o2

mok

mi =

, 9)
)

which assumes that the number of clusters in the treatment arm is the same as in the control

arm. Rewriting the expression in terms of p and o yields:

(ta/g + t5)20'2 ((I_Tp)>
52 = (to)s + tg)%0? (1+(2m071)P) '

mok

mi =

4.2 The Role of Covariates

Although, due to randomisation, covariates are not used to partial out differences between
treatment and control, they can be very useful in reducing the residual variance of the outcome
variable, and subsequently leading to lower required sample sizes.

There are several equivalent ways of expressing the power calculation formula with covariates.
Below, we present multiple formulations, as the choice of which to use in practice often depends
on the specific inputs available to the researcher.

The simplest or most intuitive version is as follows:

o2

' =mk = (ta2 + t5)* 255 (14 (m = Dpa), (11)

where o2 is the conditional variance (that is the residual variance once the covariates have
2

been controlled for), and p, = 020# is the conditional ICC.!Y The form of equation (11)

mirrors that of the unconditional representation in equation (6). If there is data from a similar

context and target population with the relevant variables, as in the case of APRENDE, it is

straightforward to get estimates of these conditional parameters.?’ However, if such data is not

9Tn the case with covariates, the number of degrees of freedom of the t distribution is 2(k — 1) — J, where J is
the number of covariates.
20Refer to Appendix B to see how to estimate these parameters.
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available, the formulation by Bloom et al. (2007) might be easier to apply:

W= = (taja + )20 (mpl(1 = F2) + (1= p)(1 = R2), (12)
where R? is the proportion of the cluster-level variance component explained by the covariates,
and R2 the unit-level equivalent. This formulation is useful to see the differing impact of
covariates at different levels of aggregation i.e. if the covariates are at the unit or cluster-level.
For instance, a unit-level covariate can affect both R2 and R2, whilst a cluster-level covariate can
only increase R?. Equation (12) may be useful if R2 and R? are reported in previous research,
and the parameters in equation (11) are not. To reiterate, with a series of calculations, it is
straightforward to move from equation (12) to (11), using R%, R2, 0% and p to obtain values for
02 and p,.2!

Finally, Hedges and Rhoads (2010) present the formula for the inclusion of covariates as:

2
n* =k = (tays + tﬁ)QQ% (14 (m —1)p) — (R2 + (mR? — R2)p)] .

This equation is useful for building intuition into the role of covariates, as the first term in
brackets is the regular design effect, whilst the second shows how covariates impact the overall
variance inflation factor.

Table 2 presents how the inclusion of a covariate impacts the required sample sizes for six
different scenarios (m= 8, 20 and 100, p=.01 and .3). Values for the standard deviation come
from the 2024 earnings variable of the Evalual.and National Survey of Earnings. As it is clear
from equation (12), the larger either R2 or R? is, the smaller the sample size per arm is. Note
from equation (12) that the influence of R2 is larger when p is smaller. For example, in Table
2, when p = 0.01, m = 100, and R?=0, the sample size per arm decreases from 1351 to 1043
(a 23% reduction) when R2 increases from 0 to 0.5. However, the same increase in the R? only
translates into a decrease from 19342 to 19123 (a 1% reduction) when p = 0.3. In this sense,
increasing R2 is similar to increasing the number of units per cluster, which has little effect on
power when p is high.

As it is also clear from equation (12), the effect of R? is mediated by mp, so the reduction
in sample size achieved by increasing R? will be higher when both m and p are large. Again,

increasing R? is analogous to increase the number of clusters. This will have a larger effect when

21Using the definition of p., we note that o?(1 — p)(1 — R2) = Ufc,u = (1—p.)o2 and 0%p(1 — R?) = oﬁ’c = pa02.
2 2
This allows us to write the R? terms as functions of p, o2, p, and o2: (1—R?) = % and (1—R2) = %.
These expression are used in intermediate steps to move from equation (12) to equation (11).
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p is large and when m is large (because a large m indirectly implies that the number of clusters
is small, so we obtain a larger effect when we increase them). This is also clear in Table 2: when
p = 0.3, m = 100, and R2=0, the sample size per arm decreases from 19342 to 9940 (a 48%
reduction) when R? increases from 0 to 0.5. However, the same increase in the R2 only translate
in a decrease from 679 to 654 (a 3.6% reduction) when p = 0.01 and m = 8.

A final point to note concerns an issue raised by Bloom et al. (2007) regarding unconditional
versus conditional ICCs. As they emphasize, researchers should not be concerned with the
possibility that an unit-level covariate, by reducing the unit-level variance component by a
larger extent than the cluster-level component, may lead to a higher conditional ICC. What
matters is that by reducing both components, unit-level covariates increase precision and thus

lower required sample sizes.

4.2.1 Unequal Numbers of Clusters

As shown in Section 4.1.1, the sample size equations can be expressed allowing either the number
of clusters or the number of units per cluster to differ between the treatment and control arms.
First, consider the expression for k; as a function of kg and m, written in the form presented by

Bloom et al. (2007):22

(taje + tp)o? (meU=REEU=PU=RD))

k1 = . 13
! 52 = (oo + tg)%0? (mﬂ(I*RE)Jr(l*p)(l*R%)) (13)

mko

As before, we can also write an expression for m; as a function of k and mg:%?

_ _p2
(ta/2+tﬁ)2o—2 ((1 p)(kl Ru))

52 _ (fa/2 +t5)20? (2mop(1—R3)+(1—P)(1—Ri)) '

mok

mi =

4.3 Difference-in-Differences and Lagged Outcome as a Covariate

Where the researcher has not only data on the outcome variable subsequent to treatment, but
also prior to treatment (baseline), it is possible to employ a difference-in-differences approach,
as well as to include the baseline realisation of the outcome variable as a covariate, a special

case of the approach discussed in subsection 4.2. Following Teerenstra et al. (2012) the data

22We can also write an expression for k; in the form of either equation (7), where we replace o, and o, with oz,
and 04, or equation (8), where we replace o and p with o, and p.

ZWe can also write an expression for mo in the form of either equation (9) or (10), replacing unconditional
parameters with their conditional versions.
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generating process (which includes the panel component) follows:
Yvijt = P+ /BIT]' + BoPOST; + ﬁg(POSTt X T}) + ¢j + ¢ + Uiy + Uy,

where i indexes units, j clusters, and ¢ time periods (¢=0, the pre-intervention period, or t=1,
the post-intervention period), POST; takes value 0 if t=0 and 1 if t=1, and 7j is the treatment

indicator. The terms c;, cjt, u;5, and u;j; are assumed to be normally distributed with mean

2 2 2

zero and variances 02, 02, 02, and o2, respectively.?

The error terms are structured as two cluster-level components (c; and ¢;;) and two unit-level
components (uij and uijt), where c¢; and u;; are time-invariant. Two autocorrelation terms are
required in this case, namely the unit-level autocorrelation of the outcome over time, p,, and

the analogous cluster-level term, p.:

2 2

o d o2
pu=—5"—5 and p.=—5
2 4 o2 o2+ a%’

The ICC in this situation is

where var(c;)=c2, var(c;js)=02, var(u;;)=c2 and var(u;;j:)=02,.

expressed as:?

g 3 to ft
P="51 2 2, 2
o¢ + Oct + o + Out
Once these parameters are in hand, we can define the key parameter used in sample size calcu-

lations, 7, which represents the proportion of the total variance attributable to time-invariant

components:

. o2+ 02/m mp 1—p

— = =+ .
o2t oZ +otfmtodim 1+ (m—1p" " T4 (m—1)p™

The sample size formula for a difference-in-differences estimation can be written as

2
n' =k = 2(1 =)t + t5)°255 (L4 (m — 1)), (15)

and the sample size formula for an estimation using the baseline outcome variable as a covariate

as:

2
g
n* =m*k* = (1—1%)(tas2 + t5)22§(1 + (m —1)p). (16)
24We note the abuse of notation in using the subscript ¢ for the variance terms o2, and o2, as these terms are
constant across the two time periods.
25 Appendix C.5 details how to estimate these key panel data parameters.
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In order to see the benefit of using the panel element, it is instructive to compare equations (15)
and (16) with equation (6). The most important message is that the sample size requirement
is minimised by including the baseline level of the outcome variable as a covariate (note that
1 —72 <1 and that 1 —r? < 2(1 —7)). Alternatively, given a sample, the highest power is
achieved by including the baseline value of the outcome variable as covariate. Hence if baseline
data on the outcome variable is available, one should always control for it as a covariate rather
than doing difference-in-differences or a simple post-treatment comparison (McKenzie, 2012;
Teerenstra et al., 2012).

Also, it is useful to see that the largest reduction on sample size requirements when we
include the baseline value as covariate takes place when r is close to 1 (hence 1 — r2 which
multiplies the sample size formulae (16) is close to zero). Intuitively, by conditioning on the
baseline value of the outcome variable, we are netting out the time invariant component of the
variance (which is large when r is close to 1).

Note also that if r is close to zero, given a sample, there might be little difference in power
between including the baseline value of the outcome as a covariate, and just post-treatment
differences. Hence, from the point of view of power, it might be better to spend the resources
devoted to collect the baseline on collecting a larger sample post-treatment or several post-
treatment waves (see McKenzie (2012)).20 Interestingly, in terms of power, including the baseline
value of the variable as covariate always dominates over differences-in-differences. Moreover,
baseline data is required for both estimators. Hence, there is little reason in terms of power to
justify difference-in-differences

In Table 3, we report the sample size requirements for the three estimation strategies for
various values of r, calibrating the calculations to the likely effect size and variance of the
earnings for 2024 of the EvalualLand National Survey of Earnings. The resulting sample sizes
quantifies the intuition above - the higher the time invariant component of the variance, r, the
greater the benefit of controlling for baseline differences via covariate or difference-in-differences
vis. a vis. single post-treatment difference. For low values of r, the difference-in-differences
strategy is highly inefficient. The table also clearly illustrates the superiority of controlling for
the baseline outcome as a covariate, which consistently outperforms the other two strategies

across all values of r.

26There might be other reasons to collect baseline data than gains in power. These vary from checking whether
the sample is balanced in the outcome variables, to collect information that allow to stratify the sample, and
to have the basis for heterogeneity analysis (see McKenzie (2012)).
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5 Binary Outcome Case

5.1 Unit-Level Randomisation

Next, we move on to discussing the case where the outcome variable is binary, for instance
whether an individual is working or not or whether a student obtained a certain grade level or
not. There is a large literature that focuses on the binary outcome case, with several different
approaches (for example Demidenko (2007), Moerbeek and Maas (2005)). Some articles deal
with effect sizes measured in differences in log odds, others with differences in probability of
success between treatment and controls. We follow Schochet (2013) who measures the effect size
in terms of differences in the probability of success. We believe that this is more intuitive for
most economists, and that the required inputs might be more easily accessible from published
studies.?” One difference between the continuous and the binary outcome case is that in the
latter, we do not need the variance. Binary outcomes follow a Bernoulli distribution, so knowing
p, the probability of success, also yields the variance; p(1 — p).
Using a logistic model, we can write the probability of success for individual ¢ as:

eBo+61T;
pi = Probly; =1|T3) = 557

where y; is binary (takes value 1 in case of success and 0 in case of failure) and as before, T;

denotes treatment status. The effect size, § can thus be written as p(y; = 1|T; = 1) — p(y; =

1|T; = 0) or (p1 — po), where the subscripts denote treatment and control status respectively.
Following an analogous procedure as in the continuous case, we arrive at a sample size

equation for the binary case (Donner and Klar, 2010):

(17)

Nt (m(l —p1) | po(l —p0)> (28 + Zas2)?
N s 1—m

+ )
(p1 — po)?

where 7 is the proportion of the sample that is treated, nj = 7#N* and n§ = (1 — T)N*.28
Note that equation (17) is equivalent to equation (3), where 03 and o? are replaced with their
equivalents in the binary case, po(1 — po) and p1(1 — p1). In general, these variances will be
different, so as we saw in equation (3), the optimal treatment-control split will differ from .5.

The optimal allocation to treatment status, 7* can be written as:

27 An advantage of the approach we follow is that the impact parameter does not depend on whether covariates
are included or not. This is not the case when impact is measured in log odds. See Schochet (2013) for a
detailed discussion of this.

28If the null hypothesis of zero impact is tested using a Pearson’s chi-square test, and n} = ng, then n* =

z p(1—p)+2 — — 2
(a/2y/20 p)+(5\/pl(£ POTPOU=PON ere p = PLEPO (see Fleiss et al. (2003) equation (4.14), as well as
Po—P1) 2

equation (4.19) for different sample sizes in treatment and control).
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p1(1—p1)
* po(1—po) (18)

B [p1(l=p1)
1+ p;(lfp(l))

Hence, in the binary outcome case, the optimal split would only equal .5 in the special case

™

where pp=1 — p; for example pp=.4 and p;=.6.2 In the case of an even split between treatment

and control status (7w = .5), we can write n* as

(ZB + Za/2)2

5 (19)

n* = (p1(1 —p1) + po(1 — po))

5.2 Cluster-level Randomisation

Having considered the unit-level treatment case, we now move to cluster randomised treatment,
still following Schochet (2013), as we do for the rest of section 5. For the cluster randomised
case, a Generalised Estimating Equation (GEE) approach is followed, where the clustering is
accounted for in the variance-covariance matrix, using the ICC, p. As before we can write the
probability of success for individual 4 in cluster j as

650+,31Tj

pij = Prob(y;; = 1|T;) = 1 + ePotBTy’

For cluster j, the m x m variance covariance matrix V; is written as

V; = AY?R(p) A}, (20)

where A; is a diagonal matrix with diagonal elements p;;(1 — p;;) and R(p) is a correlation
matrix with diagonal elements taking the value of 1, and off-diagonals the value of p. Hence
cov(Yij, Yem) = p when j = m and =0 when j # m. Note the lack of a j subscript on R(p) -
it is taken as common across clusters, as in the Generalised Least Squares (GLS) approach for
a continuous outcome. This means that we no longer specify a random effect for each cluster,
and allows us to get closed form solutions for the sample size equations.?"

The sample size equation for the binary outcome case with cluster randomisation can be

written as:

29While setting po = p1 would result in an equal allocation between treatment arms, it effectively assumes that
the intervention has no impact under the alternative hypothesis. As such, it is unsuitable for power calculations
intended to detect a treatment effect.

30Results from simulations we ran utilising the GEE approach yielded very similar results to those using a linear
probability model with random effects. Schochet (2009) finds similar results using GEE and random effects
logit models too.
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N* = (Pl(l —p)  po(l —po)) Cap + 2 1 | (m— 1)), (21)

T + 1—m 62

where 7 is the fraction of clusters randomised to receive treatment, nj = mkj = 7N* and
ngy = mk§ = (1 —m)N*. As above, if the treatment is evenly allocated, we can write this as

(ZB + Za/2)2

S22 (14 (m = 1)) (22)

n* =mk™ = (p1(1 — p1) + po(1 — po))

As before, the sample size equation for the binary outcome mirrors that of the continuous
outcome, with the design effect being the only difference between the unit and cluster randomised
sample size equations.

Table 4 presents sample size requirements for three different levels of success probability for
the control groups, pg; 0.1, 0.3 and 0.5. The first thing to notice is that the closer pg is to .5,
the larger the sample size required. This is because for a binary variable, variance is largest at
p=0.5. For example, for m=30 and p=.03, the sample size for pp=0.5 is double that of py=.1.
As in the continuous case, we see that higher ICCs and larger cluster sizes, m, lead to larger

required total samples. This is due to the design effect.
5.2.1 Unequal Numbers of Clusters
It might be useful to have a formula for k1 as a function of m and kg, that will provide power

of (1 — () for the given m and ko:

o PR oyt 21+ (m — 1)
1:

6 — (L5220 (a2 + 221+ (m — 1)p)

(23)

5.3 The Role of Covariates

In this section, we consider the case of unit-level treatment allocation where one has a single
covariate, X;, that is discrete, but not necessarily binary. In the case where the X is continuous,
one can discretise the variable. Here, we write p; as

eBot+B1Ti+[2X;

pi = Prob(yi = 1|T;, X;) = 1 + eBot+STit+BaXs’

Where covariates are included, we need several extra inputs into the sample size equation,
relating to the distribution of the covariates, and how success probabilities change according to

the covariate values.
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First, assume that X; can take any of the following Q values, x1,...... ,2q. Define 0, =
Prob(X; = xq) forqge1,.....,Q , with (0 < 6, < 1) and Eq 0, = 1. Next we need to specify how
success probabilities change across the values of X;. Define po; = Prob(Y; = 1|T; = 0, X; = x,)
and p1y = Prob(Y; = 1|T; = 1,X; = x,). Then we can define an effect size for a specific
value of ¢, 64 = p1qg — Pog, and an overall effect size, § = Zq 6,04. Schochet (2013) notes that
covariate inclusion will improve efficiency if at least two of the po, or pi4 probabilities differ
across covariate values.

With these inputs at hand, we can now write the sample size equation as:

(Zﬁ + Za/2)2

N* = (gM_lg,) 62 )

(24)

where

mp m2 ms3
M = mo MmM9o Myl »

m3 M4 Ms

mi :Zﬂeqplq(l - plq) + (1 - W)quoq(l — qu),
q
m2 = Zﬂ'eqplq(l - plq)a
q
ms = quweqplq(l — p1g) + (1 = 7)0ypog (1 — pog),

q

mq = Z 2qm0gp14(1 = p1g),
q

ms :ngﬂaqplq(l —p1g) + (1 = m)8pog(1 — pog),
q

and g is a 1 x 3 gradient vector with elements:

g[l,1] = Zeq[qu(l = P1g) — Pog(1 — Pog)],
q
g[1,2] :Zeq[plq(l = p1g)l,

gL, 3] = queq{plq(l = P1q) — Pog(1 — Pog)]-

In the Appendix section D we provide a purposefully designed Stata program to carry out this
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computation for 5 different values of the covariate.3!

5.3.1 Cluster-level Randomisation

Finally we consider a cluster randomised treatment in the presence of a single, discrete cluster-
level covariate. Candidates for this could be a discrete cluster characteristic or a continuous
variable, such cluster means of the outcome variable at baseline, which are then discretised. We
write the probability of success here as

eﬁo+/31Tj+52Xj
1 4+ efotATj+pB2X;”°

pij = Prob(yi; = 1|1}, X;) =

The variance-covariance matrix in this scenario is very similar to that without a covariate (see
equation 20) with the exception of the use of the conditional ICC, p,, not the raw ICC (p) in
the correlation matrix. The sample size calculation for this section can be expressed as

(Zﬂ + Za/2)2

N* _ 2m*k:* — (gM—lg/) 52

(1+ (m = 1)p), (25)
where g and M are defined as above, and p, is the conditional ICC, as we saw in the continuous
outcome case with cluster randomisation and covariates. Note that the inclusion of a cluster-
level covariate can lead to precision gains through decreasing the total residual variance, as well
as by decreasing the conditional ICC. Schochet (2013) suggests that the latter will have more
impact on lowering the required sample size.

Table 5 presents the number of clusters required in the binary outcome case for two values
of p; 0.05 and 0.1, and a binary covariate. What we see here is that the greater is the difference
between pgp and pp; (the difference in control group success rates for the two values of the
covariate), the greater is the sample size reduction due to the inclusion of the covariate. The
number of clusters required (for m=60, p=.05, po=.5, and a constant effect size of .1 across
covariate levels) is 51 in the absence of a covariate (bottom right section of Table 4). In Table

5, this number falls to 49 when pyo=.4 and pg1=.6, and falls markedly to 32 when pgy=.2 and

p01:.8.

310ur Stata programs which accommodate 2, 3, 4 and 5 possible values of the covariate can be found in https://ifs.
org.uk/publications/sample-size-calculators-going-beyond-simple-sample-size-calculations-practitioners. Scho-
chet (2013) provides a set of SAS programmes for sample size calculations for binary outcomes.
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6 Extensions

In this section, we provide three extensions which we think are particularly useful for researchers.
The first extension discusses how to choose optimally the number of clusters vs. number of units
within clusters. The second extension explains how to compute power using simulation methods,
which are useful when there are no existing formulae for the RCT that is being planned. The
third extension shows how to adapt the sample size computations when several outcomes are

used.

6.1 Choosing the number of clusters vs. units per cluster

The same MDE can be obtained with different combinations of k, the number of clusters per
arm, and m, the number of units per cluster (see equation 5). The question arises how to choose
amongst the different combinations. One common criteria is to choose the combination that
maximises power subject to a budget constraint. Consider the case in which the costs of the
RCT comprise a fixed cost per cluster, denoted by f, and a unit constant marginal cost, denoted

by v. Hence, the total cost function of the cluster RCT takes the form:3?

C =2k(f + vm),

Minimising the square of the MDE (as given in equation 5) subject to this cost constraint yields

optimal values for m:

me = L%, (26)

Using this formula and the cost function, we derive an expression for the optimal number of

clusters per arm, k:

R (27)

2
2(f +v\/1%)
As Liu (2013) notes, it my be instructive to use the definition of the ICC to rewrite equations
(26) and (27) as:

m* = gl—p and k¥ = ¢ (28)

2 2f +oy/IE2)

32This formulation assumes that the fixed cost of a treatment cluster is equal to that of a control cluster, and
that the marginal cost per unit is the same across both arms. This assumption is reasonable when the research
budget does not cover the cost of delivering the intervention. However, when intervention costs are part of
the research budget, treatment is typically more expensive than control. In such cases, the optimal sample
allocation will generally require differing numbers of clusters and units in the treatment and control arms (see
McConnell and Vera-Hernandez (2022) for detailed methods).
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where it is clear that the larger the ICC is, the smaller the optimal m is. This is due to the
fact that when the ICC is high, outcomes within clusters are highly correlated, and increasing
the number of units per cluster, m, adds little in precision gains. Resources are better spent by
increasing the number of clusters per arm, k.

By substituting the optimal values of m* and k* in expression (6) and solving for ¢, we can

compute the MDE that can be achieved given the budget constraint:

5 =t 4 1) \/202 ( 1+<m—l>p> | (29)

m*k*

By combining (28) and (29), we derive an expression for the minimum total cost, C*, required

in order to achieve a power of 1 — 8 for a given value of ¢:

fl-p
40° 2 Fl—p| (1TG/e5"—Vp
* =20ty +t e
¢ 52 (a/2+ ﬁ) f+’l) v p \/m (30)
vop

There are cases where the optimal allocation cannot be implemented —e.g., when the number
of available clusters is smaller than the optimal, or when clusters have fewer units than required.
In such instances, expression (6) can be used to solve for the required number of units per cluster,
m, given a fixed number of clusters, k, or vice versa. A further consideration is that when the
number of clusters is small, standard inference procedures based on cluster-robust ¢-statistics
tend to over-reject under the null hypothesis (Cameron et al., 2008; MacKinnon et al., 2023). In
such cases, inference is typically conducted using the wild cluster bootstrap procedure. However,
to the best of our knowledge, there are no widely accepted sample size calculation methods when
the analysis is going to be conducted using the wild cluster bootstrap. Hence, it seems preferable

to avoid a situation with too few clusters.

6.2 Simulation

A researcher might need to compute the required sample size for an experiment whose features
do not conform to the ones indicated in previous sections. The possibilities of variation are
endless. They include experiments in which the number units per cluster varies across clusters,
experiments with more than two treatment arms, or using data from more than two time periods,
to say a few. In situations where some features of the experimental design vary significantly with
respect to the canonical cases given above, simulation methods can be very useful to estimate
the power of a given design, and correspondingly adjust the sample of the design to achieve the

desired level of power.
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To understand the logic of the simulation approach, it is useful to remember the definition
of power: the probability that the intervention is found to have an effect on outcomes when
that effect is true. In a hypothetical scenario in which the researcher happened to have 1,000
samples as the ones of her study, and if she could be certain that “the effect is true” in all these
samples, then she could estimate such probability (power) by simply counting in how many of
these samples she “finds” the effect (the null hypothesis of zero effect is rejected), and dividing
it by 1,000.

The simulation approach simply operationalises the above by providing the researcher with
1,000 (or more) computer-generated samples, hopefully similar to the one of her study (or at
least, obtained under the assumptions that that the researcher is planning the study). Because
these are computer-generated samples, the researcher can obtain these samples imposing the
constraint that the effect is true (and in particular, it will draw the samples assuming that the
effect of the intervention is the same as the effect size, J, for which she wants to estimate the
power).

In general, the steps required to estimate the power of a given design through simulation are
as follow (see Appendix C for an example):3?

Step 1: define the number of simulations that will be used to estimate the power of the
design, say S; as well as the significance level for the tests.

Step 2: define a model that will be used to draw computer-generated samples “as those
in the study”. This model will have a non-stochastic part (sample size, number of clusters,
distribution of the sample across clusters, number of time periods, ICC, autocorrelation terms,
mean and standard deviation of the outcome variable, effect size, etc) and a stochastic part
(error term).3* An example of such model could be, for instance, equation (4) but for specific
values for the effect size, standard deviation and ICC (in Appendix C.6 these are set as § = 4,
o =10 and p = .3).

Step 8: using computer routines for pseudo-random numbers, obtain a draw of the error
term (or composite of error terms) for each unit in the sample. It is crucial that the error
term is drawn taking into account the stochastic structure of our experiment (the correlation
of draws amongst different units and time periods through the ICC or similar parameters). To
draw samples from the error terms, a distribution will need to be assumed. Although assuming

Normality is common, the approach allows to assume other distributions that might be more

33Feiveson (2002) provide insightful examples for Poisson regression, Cox regression, and the rank-sum test.
341f a pilot dataset is available, an alternative approach is to bootstrap from this data(see Kleinman and Huang
(2017)).

26



appropriate for the specific experiment.

Step 4: using the model and parameter values indicated in Step 2, and the sample of the
error term (or composite of error terms) generated in Step 3, obtain the values of the outcome
variable for the sample. Once this is done, the draws of the error term generated in Step 3 can
be discarded.

Step 5: using the data on outcomes generated in Step 4, and the model of Step 2, test the
null hypothesis of interest (usually, that the intervention has no effect.?>) Keep a record of
whether the null hypothesis has been rejected or not.

Step 6: Repeat Steps 3 to 5 for S times.

Step 7: the estimated power is the number of times that the null hypothesis was rejected in
Step 5 divided by S.

Although using simulation methods to estimate power has a long tradition in statistics, the
approach is not so commonly used in practice (Arnold et al. 2011).36 We suspect that Step 3
is the most challenging for the applied researchers. In Appendix C, we provide several hints,

which could be of some help.

6.3 Adjusting Sample Size Calculations for Multiplicity

A common problem with experiments (and more generally in empirical work) is that, more
than one null hypothesis is usually tested. For instance, it is common to test the effect of the
intervention on more than one outcome variable. This creates a problem because the number of
rejected null hypothesis (the number outcome variables for which an effect is found) will increase
(independently of whether they are true or not) with the number of null hypotheses (outcome
variables) tested if the significance level is kept fixed with the number of hypotheses.

For instance, consider that we are testing the effect of an intervention on three different
outcome variables, and that we use an « equal to 0.05 for each test. If we assume that the three
outcome variables are independent, then the probability that we do not reject any of the three
when the three null hypotheses are all true is (1 — 0.05)3. Hence, the probability that we reject
at least one of them if the three are true is 1 — (1 — 0.05)% = 0.14. Why is this a problem?
Assume that the intervention will be declared successful it is found that it improves at least one
of the outcomes. The numbers above implies that the intervention will be declared successful

with a probability of 0.14 (larger than the normal significance level of 0.05) even if it has no real

35We are assuming that the test for the null hypothesis has the correct size. Otherwise see Lloyd (2005)
36See Hooper (2013), Kontopantelis et al. (2016), and Kumagai et al. (2014) for some recent implementations of
the simulation approach to estimate power.
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effect on any of the three outcome variables.

The problem of multiplicity of outcome variables is recognised by regulatory agencies that
approve medicines (Food and Drug Administration (1998) and European Medicines Agency
(2002)) and has become more common also in applied work in economics (Anderson, 2008;
Carneiro and Ginja, 2014).37 The standard solution requires performing each individual hy-
pothesis test under an « smaller than the usual 0.05 (Ludbrook 1998, Romano and Wolf 2005)
so that the probability that at least one null hypotheses is rejected when all null hypotheses

are true ends up being 0.05.38

Hence, when doing the sample size calculations, the researcher
should also use a smaller a than 0.05, which will increase the sample size requirements.

When the outcome variables are independent, the probability that at least one null hypothesis
is rejected when all are true, usually called the Family Wise Error Rate (FWER) is 1 — (1 —a)?,
where « is the level of significance of the individual tests and A is the number of null hypothesis
that are tested (i.e. number of outcome variables). Hence, if our study needs a FWER =0.05,
then the significance level for each individual test is given by 1 — (1 — 0.05)(/?) which would
be 0.0169 in our example of h = 3.3

In most experiments, the outcome variables will not be independent. Taking into account
this dependency will yield higher values of «, and consequently smaller sample size requirements.
If one was willing to assume the degree of dependency amongst the different outcome variables,
then a time consuming but feasible approach to compute the required power is to use the
simulation methods previously described combined with a method for Step 5 (testing the null
hypothesis) that takes into account the multiple tests carried out and the dependence in the
data (such as Romano and Wolf (2005) or Westfall and Young (1993)). If this was not available,
a rule of thumb is to use v = 1 — (1 — 0.05)(*/ \/E), a correction which was popularised by John
W. Tukey (Braun, 1994). This will result in an « larger than when independence is assumed,

and hence smaller sample size requirements.

7 Conclusion

In this paper, we have reviewed methods for conducting sample size calculations that go beyond
the standard textbook example. The extensions discussed include how to balance the trade-off

between the number of clusters and the number of units per cluster, how to adjust calcula-

37There is less consensus on whether correcting for multiplicity is necessary when testing multiple treatments (see
Wason et al. (2014)).

38 An alternative way to analyse the data is to test jointly (through an F-test) the null hypotheses that the
intervention does not have an impact on any of the outcome variables considered.

39A common simplification is to use the Bonferroni correction, which would be 0.05/h.
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tions when multiple outcomes are considered, and how to use simulation techniques to estimate
statistical power in more complex designs not addressed by analytical formulae.

Researchers must make more assumptions when applying the more complex methods pre-
sented here than when using simpler approaches. Nevertheless, we argue that the growing avail-
ability of publicly accessible datasets places researchers in a relatively strong position to make
credible assumptions about key parameters. Moreover, researchers can contribute to cumula-
tive knowledge by routinely reporting fundamental quantities—such as intra-cluster correlations,
unit and cluster-level autocorrelations, and R-squared values—in their studies. Journal editors
could further facilitate progress by coordinating reporting standards, as has been done in the

medical sciences (see Schulz et al. (2010)).
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Appendices

A Derivation of Sample Size Formula for Unit-Level Randomi-
sation with Unequal Variances
In this section we derive the optimal sample allocations for RCTs with randomisation at the

unit level (individuals, firms, etc.) where variances are unequal, arriving at the expression found

in equation (3). We start with the expression for o:

6= (tg+t — + —
(ﬂ a/2) 0 n

a i
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Defining m = 0'0U+10'1 leads to NV = % By symmetry, the first order condition for ng will
result in N = Z—g, where 7y = Go‘ffgl. Plugging these values for ng and n; back into the equation
for 62 we see that:
2 2
o o
N*=(tg+tap)’= | 2+-21),
(b + ta/2) 2 \ny
where mj = 22— and 7] = F'—.
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B Estimating Key Parameters in Stata

On occasions, we might have a dataset from a similar environment to the one for which we
are planning the RCT. In this case, we might use this dataset to estimate the key parameters
needed for the sample size calculations. In this section, we show how to do this with the
fictional Evalualand National Survey of Earnings. The variables earnings_24 and earnings_23
denote earnings in two different time periods. The variable read is used as a covariate, and the
variable town_id is the cluster identifier.

use "Evalualand_Survey_Earnings.dta", clear

drop if read==.

/ * estimate $\rho$=/
loneway earnings_24 town_id

gen rho=r (rho)

/* estimate $\sigma_u$x/

gen sigma_u=r (sd_w)

/* estimate $\sigma_c$x/

gen sigma_c=r (sd_b)

/* estimate $\sigma_x$, using the varable \textit{read} as the X variablex*/
regr earnings_24 read, cluster (town_id)

predict uhat, resid

sum uhat

gen sigma_x=r (sd)
/ * estimate $\rho_x$x/
loneway uhat town_id

gen rho_x=r (rho)

/x estimate $\sigma_{xu}$x/

gen sigma_xu=r (sd_w)

/+ estimate $\sigma_{xc}S$x/

gen sigma_xc=r (sd_b)
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/ * estimate SR_u"2S$x/

gen R2_i=(sigma_u"2-sigma_xu"2)/sigma_u"2

/ x estimate SR_c"2$x/

gen R2_c=(sigma_c"2-sigma_xc"2)/sigma_c"2

/* estimate the panel data parameters $\rho_u$ and $\rho_c$ =/
egen earnings_24_c=mean (earnings_24),by (town_id)

egen earnings_23_c=mean (earnings_23),by (town_id)

gen earnings_24_u=earnings_24-earnings_24_c

gen earnings_23_u=earnings_23-earnings_23_c

corr earnings_24_c earnings_23_c

gen rho_c=r (rho)

corr earnings_24_u earnings_23_u

gen rho_u=r (rho)

C Simulation Code

The objective here is to provide sections of code that are useful if you would like to run your own
simulations. This may be done in order to verify formulae for certain outcomes, or to provide
a simulated estimate of sample size if no formulae are available for the specific, likely complex,

trial design to be implemented.

C.1 How to Create Clusters

The code below creates a dataset with 100 clusters (k = 100) with 10 observations per cluster
(m = 10), with equal treatment/control allocation. At the cluster-level, a normally distributed
cluster-level error term, with a standard deviation of 10, is created (called group below). As

shown later, this will be used to create an ICC.

/xcluster—-levelx/
/* create an empty dataset with 100 observations=*/

set obs 100

gen cluster=_n
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/*draw from a normal distribution, with mean 0, standard deviation 10 =/
gen group=rnormal (0,10)
sum

local N=r (N)

/*create the treatment variable indicatorx/

gen treat=0

/+ allocate half of the cluster to treatment status, the remaining half to
controlx/

replace treat=1 if _n<='N’/2

so cluster

tempfile cluster_error_g

/+xcreate a temporary file for the cluster errors =/

save ‘cluster_error_g’,replace

/*UNIT LEVELx*/

clear
/+*n=mk, so if we require k=100 and m=10, we need n=1000%/

set obs 1000

/*Generate clusters=/

gen u=invnormal (uniform())

/+xcut the data into 100 equally sized sections=*/
egen cluster = cut(u), g(l100)
replace cluster=cluster+l

so cluster

*merge in cluster errors

merge cluster using ‘cluster_error_g’

C.2 How to Generate Data with a Specific ICC

In this section, all of the initial code is the same as before. The addition comes in the bottom

lines, when we create the outcome variable, y, as a mix of unit and cluster-level errors. The

36



code below sets the ICC=.3 . Note too that we set ¢ = 10, the average of y in the control group
to 10, and § = 4.

/*cluster—-level«/
set obs 100

gen cluster=_n

/* set $\sigma=10$ =/

gen group=rnormal (0, 10)

sum

local N=r (N)

gen treat=0

replace treat=1 if _n<='N’/2
so cluster

tempfile cluster_error_g

save ‘cluster_error_g’,replace

/*UNIT LEVEL~*/

clear

set obs 1000

gen u=invnormal (uniform())

egen cluster = cut(u), g(l100)

replace cluster=cluster+1l

so cluster

merge cluster using ‘cluster_error_g’
tab _m

drop _m

/x set $\sigma=10$ x/

gen individual=rnormal (0, 10)
/xcreate error term as composite of group and unit error terms, with
weights to achieve an ICC=.3%/

gen epsilon = (sgrt(.3))*group + (sqgrt(.7))xindividual

/* set y=10 for the control group x/

gen y=10+ epsilon if treat==
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/* generate a $\delta=4$ «/

replace y=10+4+epsilon if treat==1\\

Once the data has been created, we may want to estimate the ICC. This is done using Stata’s

loneway command. Below we consider the ICC for the control clusters:

loneway y cluster if treat==

C.3 How to Introduce Covariates

To add a covariate at the cluster-level, we follow the code as in the section above with two

additions. In the cluster-level code we add:

gen x_g=rnormal (0,10)\\

Then, at the bottom of the code, when specifying the data generating process for y, we decide
on the R? of this covariate. Note that both cluster-level and unit-level error terms both have
o = 10, as does the covariate. The code below generates an R? of .2, and a conditional ICC of
.3 as well (the conditional variance is .8 of total variance, so to get a conditional ICC of .3, we

weight the group component by .3%.8=.24):

gen y=10+(sqgrt (.24))*group + (sqrt(.2))+*x_g + (sqrt(.56))*individual

C.4 How to Generate Data with Binary Outcomes and Specific ICCs

In order to get clustered binary outcomes, we specify a beta-binomial distribution as the data
generating process at the cluster-level. This means cluster success rates,p; are draws from a

distribution with mean p and variance pp(1 — p). The beta-binomial distribution has two pa-

rameters, « and 3, which we can derive using the two expressions p = =%~ and p =

1
a+ 1+a+p8"

Rearranging, we get a = Z@ and 8 = W. At the unit-level, binary outcomes y;; are
generated from a bernoulli(p;) distribution. In this way we can generate binary outcomes for

each unit, that are correlated within the cluster, with ICC p.

/*cluster—-levelx/

set obs 100

38



gen cluster=_n

/* set ICC = .25%/

local rho=.25

/* set $p_0$=.5 and $\delta=.05$ =/

local p0=.5

local pl=.55

/* rbeta is Stata’s beta-binomial distribution commandx/
gen pO=rbeta( (‘p0’*(l-‘rho’)/‘*rho’), ((1-‘rho’)* (1-"p0’)/‘rho’))
gen pl=rbeta( (‘pl’*(l-‘rho’)/‘rho’), ((1-‘rho’)x(1-‘pl’)/‘rho’))
local N=r (N)

gen treat=0

replace treat=1 if _n<='N’/2

gen p=p0

replace p=pl if treat==

drop pO0 pl

so cluster

tempfile cluster_p_g

save ‘cluster_p_g’,replace

/*UNIT LEVELx*/

clear

set obs 1000

* Generate clusters

gen u=invnormal (uniform())

egen cluster = cut(u), g(100)

replace cluster=cluster+l

so cluster

*merge in cluster errors

merge cluster using ‘cluster_p_g’

tab _m

drop _m

/+*quick way to generate bernoulli (p) distributed data=*/

gen y = ( uniform() < p )

C.5 How to Create Panel Data

In this section we detail how to create panel data, with specific autocorrelation and ICC terms.

Below, the values are set to p. = .2, p, = .7, the ICC p = .3, and as before, ¢ = 10:
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/*cluster—-levelx/

set obs 100

gen cluster=_n

/* set $\sigma=10$ =/

gen grp=rnormal (0,10)

gen grpl=rnormal (0, 10)

gen grpz2=rnormal (0,10)

/* where we determine $\rho_c$ */
gen groupl=sqrt (.2)*grp +sgrt (.8)~grpl
gen group2=sqrt (.2)*grp +sqgrt (.8) xgrp2
sum

drop grpx*

local N=r (N)

di N

gen treat=0

replace treat=1 if _n<='N’/2

so cluster

save cluster_error,replace
/*xunit-levelx*/

clear

set obs 1000

* Generate clusters

gen h=invnormal (uniform())

egen cluster = cut (h), g(100)
replace cluster=cluster+l

so cluster

*merge in cluster errors

merge cluster using cluster_error
tab _m

drop _m h

/* set $\sigma=10$ =/

gen indv=rnormal (0, 10)

gen indvl=rnormal (0, 10)

gen indv2=rnormal (0, 10)

/* where we determine $\rho_u$ */
gen individuall=sqgrt (.7)~xindv+sqgrt (.3)»indvl

gen individual2=sqgrt (.7) *indv+sqgrt (.3) xindv2
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drop indvx

/* where we set the ICC x/

gen y0=10+(sqgrt (.3))groupl + (sqgrt(.7))*individuall

/+ allow y to increase by 2 in the second period, a common time trendx*/
gen yl=12+(sqrt(.3))group2 + (sqgrt(.7))*individual2

drop group* individualx

/* set $\delta=4S5 x*/

replace yl=yl+4 if treat==1\\
As part of the simulation, we might want to verify that the data is being generated with the

correct p, and p.. Below is some simple code to estimate these parameters from the simulation

directly above:

/* construct cluster means of outcome variable x/

egen yl_cluster=mean(yl),by(cluster)

egen y0_cluster=mean (y0),by (cluster)

/+xconstruct individual component of outcome variable x/
gen yl_individual=yl-yl_cluster

gen y0_individual=y0-y0_cluster

/* $\rho_c$ estimate */

corr yl_cluster yO_cluster

/+ S$\rho_u$ estimatex/

corr yl_individual yO_individual

C.6 How to Compute Power Via Simulation

In this section we present code in order to simulate power as detailed in section 6.2. The basic
idea here is to run 1000 simulations, and then count the number of times the treatment coef-
ficient is statistically significantly different from zero. Counting the number of times we get a
statistically significant parameter, and dividing it by 1000 yields our simulated power. In the
code below, we refer to the seven steps outlined in section 6.2 in order to outline how one may
proceed with simulating power. The example below is for a continuous outcome with cluster

randomised treatment.

/*STEP 1x/
local numits=1000

local it=0
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/ create a temporary file that will store the output from the simulations
*/
tempname memhold
tempfile montec_results
postfile ‘memhold’ reject_t rho using ‘montec_results’
/* start quietly =/
qui{
/*start iterations herex/
while ‘it’/<=‘numits’ {
local it=‘it’+1

clear

/+ STEPS 2 and 3 */

*cluster errors

set obs 100

gen cluster=_n

gen group=rnormal (0,10)

sum

local N=r (N)

di N’

gen treat=0

replace treat=1 if _n<='N’/2
so cluster

tempfile cluster_error_g
save ‘cluster_error_g’,replace
clear

set obs 1000

* Generate clusters

gen h=invnormal (uniform())
egen cluster = cut(h), g(100)
replace cluster=cluster+1

so cluster

+*merge in cluster errors
merge cluster using ‘cluster_error_g’
tab _m

drop _m

gen individual=rnormal (0,10)

42



/* STEP 4x/
gen y=10+(sgrt(.3))*group + (sqrt(.7))=*individual
replace y=y+4 if treat==
loneway y cluster if treat==
local rho=r (rho)
regr y treat,cluster(cluster)
/% STEP 5 */
local t_loop=_bltreat]/_sel[treat]
local df=100-2
local critical_u=invttail (‘df’, .05/2)
local critical_l=invttail('df’,1-.05/2)
local reject_t=(‘t_loop’>‘critical_u’) | (‘t_loop’<‘critical_1")
di ‘reject_t’
/+*write output from simulation to the temporary filex/
post ‘memhold’ (‘reject_t’) (‘rho’)
clear
}
/* STEP 6 =/
} /+ close quietly=*/
postclose ‘memhold’
use ‘montec_results’,clear
/* STEP 7 x/
/+ reject=1 if null is rejected, 0 otherwise. So the mean of reject from
the 1000 simulation draws will yield the simulated power =/

sum reject_t rho

D Stata Programmes to Compute Power with Binary Outcomes

Below is some code that creates a Stata .ado programme in order to get power for binary out-

comes. The first section of code immediately below is for the case where there are no covariates:

cap prog drop discretepower

program discretepower

syntax anything [,alpha(real .05) beta(real .8) pi(real .5)]
tokenize "0’ ",parse(" ,")

local rho ='1'

local m ='27
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local p_0 =1'3’/

local impact ='4’

local z_alpha = invnormal (1-(‘alpha’/2))
local z_beta = invnormal (‘beta’)
local deff = (1+‘rho’*('‘m’-1))

local p_1 =‘p_0’'+‘impact’
local k =(‘deff’/*m") % (
(“p_1" % (1="p_1")/ pi’)+('p_0’* (1-'p_0")/(1-'pi’)) )

*((‘z_alpha’+‘z_beta’)"2)/ ‘impact’ "2

di
di "Total number of clusters= " ‘k’
end\\

Here is an example of how to use this .ado file for the case where pg = 0.5, § = .1, p = .05
and m = 30. The order in which these parameters must be entered is specified by the positional
arguments within the .ado file. For example, see the line
{\newline}

\begin{lstlisting}

discretepower .05 30 .5 .I1I\\

Now for the more complicated code below, where we allow a single discrete covariate, as we saw
in section 5.3. The code below allows for a discrete X with five points of support. The code
could easily be shortened for a simple binary X, or extended for more points of support. The

code for points of support up to 5 is supplied as supplementary material:

cap prog drop discretepowerX
program discretepowerX

syntax anything [,alpha(real .05) beta(real .8) pi(real .5)]

tokenize "'0’'",parse(" ,")
local rho ='1"
local m =127
local x 0 =13/

local theta_0 ='4'
local p_CO =5’
local impact_0 ='‘6'
local x_1 =77
local theta_1 =1'8'

local p_C1 =19’
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local

local

local

local

local

local

local

local

local

local

local

local

local

local

impact_1 ='10"'
x_2 =11
theta_2 =112’
p_C2 =113’
impact_2 ='14'
x_3 ='15'
theta_3 ='16’
p_C3 =17
impact_3 ='18"
x_4 ='19'
theta_4 =120’
p_C4 ='21"'
impact_4 =1'22'

p_C =(‘theta_0"*‘p_CO0’

‘theta_ 3’ «‘p_C3’

local

local

local

local

local

local

local

‘theta_ 2’ «‘impact_2'

local

local

P_TO =‘p_CO0'+‘impact_0"
p_T1 =‘p_Cl’'+‘impact_1"
p_T2 =‘p_C2'+‘impact_2"
P_T3 =‘p_C3’'+‘impact_3’
p_T4 =‘p_C4'’ + impact_4"
deff = (l+‘rho’"*(‘m’-1))

impact =(‘theta_0’*‘impact_0'

‘theta_1'x'p_Cl’ + ‘theta_2’*‘p_C2’" +

‘theta_4’x'p_C4")

+ ‘theta_l1’'x‘impact_1' +

‘theta 3’ «‘impact_3 ' + ‘theta_4’*‘impact_4’)

z_alpha = invnormal (1-(‘alpha’/2))

z_beta = invnormal ( ‘beta’)

\#delimit ;

matrix M= (

(‘pi’ *‘theta_0’+ ‘p_TO0’ * (1-‘p_TO0")
(‘pi’*theta_1’+‘p_T1'*(1-‘p_T1")
(‘pi’*‘theta 2/ x‘p_T2' * (1-'p_T2")
(‘pi’ *x‘theta_ 3"+ ‘p_T3"x(1-"p_T3")

(‘pi’ +»‘theta_4" x‘p_T4' x (1-‘p_T4")

4

(‘pi’*‘theta_0'x‘p_TO0' x (1-‘p_TO0"))
(‘pi’ *‘theta_ 1’ ‘p_T1' x(1-‘p_T1"))
(‘pi’ *x‘theta 2"« ‘p_T2' x (1-"p_T2"))

(‘pi’ *»‘theta_3' +» ‘p_T3" x(1-‘p_T3"))

(1-'pi’) * ‘theta_ 0+ p_CO’ % (1-‘p_C0"))
(1-‘pi’)*‘theta_1’'* p_Cl’x(1-"p_C1l"))
(1-'pi’) »‘theta 2’ + 'p_C2’  (1-‘p_C2"))
(1-'pi’)*‘theta_3"*‘p_C3"*(1-"p_C3"))

(1-'pi’)x‘theta_4’ x‘p_C4"' x(1-"p_C4"))
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(‘pi’+x‘theta_4'+‘p_T4’' «(1-"p_T4"))

‘x_0' % (‘pl’*theta_0’*‘p_TO0' * (1-‘p_TO0") +
(1-‘pi’)*‘theta_0'*'‘p_CO’x(1-‘p_CO0")) +

‘x_1"x (‘pi’xtheta_ 1" x‘p_T1' x(1-‘p_T1") +
(1-'Ypi’)*‘theta_1"*'p_Cl’x(1-‘p_Cl")) +

‘x_2"x (‘pil’xtheta_2" ' x ‘p_T2' x (1-‘p_T2") +
(1-‘pi’)*‘theta_2'*‘p_C2’' x (1-‘p_C2")) +

*x_3' % (‘pil’*‘theta 3" ‘p_T3'*(1-‘p_T3") +
(1-‘pi’ )+ ‘theta 3"+« ‘'p_C3"%x (1-‘p_C3")) +

‘}x_47 % (‘pi’ *‘theta_ 4’ «‘p_T4' x(1-‘p_T4") +
(1-‘pi’)*‘theta_4'*‘p_C4’ x (1-"p_C4"))

\

(‘pi’*‘theta_0"x‘p_TO' x (1-‘p_TO0")) +

(‘pi’ *theta 1"+ 'p_T1’*(1-‘p_T1")) +

(‘pi’*x‘theta 2" ‘p_T2' x(1-‘p_T2")) +

(‘pi’ *»‘theta_3"+x‘p_T3'x(1-‘p_T3")) +

(‘pi’*‘theta_ 4’ x‘p_T4' « (1-'p_T4"))

(‘pi’ »‘theta_0" x‘p_TO' x (1-‘p_TO0")) +

(‘pi’*‘theta_ 1" x'p_ Tl x(1-‘p_T1")) +

(‘pi’ *theta 2’ x p_T2' * (1-‘p_T2")) +

(‘pi’*‘theta_3’"+ 'p_ T3’ (1-‘p_T3")) +

(‘pi’*‘theta_ 4’ x‘p_T4' « (1-'p_T4"))

‘)% 0" % (‘pi’*‘theta 0"+ ‘p_TO0 ' x(1-‘p_TO0")) +

‘x_1"x (‘pi’*‘theta_ 1"+ ‘p_T1'x(1-‘p_T1")) +

YX_27 % (‘pi’*‘theta_ 2’ x‘p_T2' % (1-‘p_T2")) +

‘x_ 3" % (‘pi’*xtheta 3" *'p_T3"* (1-‘p_T3")) +

‘x_4"x (‘pil’ xtheta_4' x ‘p_T4' x(1-‘p_T4"))

\

‘x_ 0" % (‘pi’*x‘theta_0"'x‘p_TO0' » (1-‘p_TO0") +
(1-'pi’)*‘theta_0’*‘p_CO0’' % (1-‘p_CO0")) +

‘x_17% (‘pi’x‘theta 1’ *'‘p_T1l % (1-‘p_T1') +
(1-'pi’)*‘theta_1'*‘p_Cl’*(1-‘p_Cl")) +

‘x_27 % (‘pi’ *‘theta 2" *‘p_T2  «x (1-‘p_T2") +

(1-‘pi’ )+ ‘theta 2"+« ‘'p_C2"x (1-‘p_C2")) +
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‘)% 3" x(‘pi’ *‘theta 3"+« ‘p_T3"+x(1-‘p_T3") +

(1

—‘pi’)*‘theta_ 3’ *‘p_C3"*(1-"p_C37)) +

‘x_4"x (‘pil’x theta_4' x‘p_T4' x(1-‘p_T4") +

14

(1

—'pi’)*‘theta_4’x‘p_C4’ « (1-‘p_C4"))

‘)x_0" % (‘pi’*‘theta 0"+ ‘p_TO0 '« (1-‘p_TO0")) +

‘x_1"%x (‘pi’*x‘theta_ 1"+ ‘p_T1'x(1-‘p_T1')) +

‘x_2"x (‘pl’xtheta 2" x ‘p_T2' x (1-‘p_T2")) +

‘x_37% (‘pi’x‘theta_ 3’ +'‘p_T3’ * (1-‘p_T3")) +

‘x_4"x (‘pil’ xtheta_4’' x‘p_T4' x(1-‘p_T4"))

4

‘X

A}

X—

_0
(1
1’

(1

“2% (‘pi’*x‘theta_0’' x‘p_TO0' » (1-‘p_TO0") +
—‘pi’)*‘theta 0’ *‘p_CO’" % (1-"p_CO0")) +
“2% (‘pi’x‘theta_1'x‘p_T1' x(1-‘p_T1") +

—'pi’)x‘theta_ 1’+'p_Cl’*(1-‘p_Cl")) +

‘x_27 2% (‘pil’ *x‘theta_2' x‘p_T2' x (1-‘p_T2") +

(1

—'pi’)*‘theta 2’ +'p_C2’ x (1-‘p_C2")) +

‘x_37 2% (‘pi’x‘theta 3’ *‘p_T3" % (1-"p_T3') +

(1

—'‘pi’)*‘theta_3’*'‘p_C3"x(1-"p_C3")) +

Yx_47 2% (Ypi’ x‘theta_ 47 x'p_T4' x (1-‘p_T4") +

)i

(1-'pi’)*‘theta_4’ x ‘p_C4" x (1-"p_C47))

mat invM=invsym (M) ;

matrix g=(

‘theta 0/ * (‘p_TO0’ » (1-"p_T0’") - ‘p_CO'x(1l-‘p_CO0")) +

‘theta_ 1/ (‘p_T1"*x(1-‘p_T1") - ‘p_Cl'x(1-‘p_Cl’")) +

‘theta 2/« (‘p_T2' » (1-"p_T2’) - ‘p_C2'x(1-‘p_C2")) +

‘theta 3"« (‘p_T3" % (1-"p_T3’) - ‘p_C3"x(1-‘p_C3")) +

‘theta 4’ « (‘'p_T4’ *x(1-‘p_T4’) - ‘p_Ca4'x(1-‘p_C4"))

4

‘theta_ 0/ (‘p_TO0 " x (1-‘p_TO0")) +

‘theta 1’ (‘'p_T1'*(1-‘p_T1")) +

‘theta 2/« (‘p_T2' x (1-‘p_T2")) +

‘theta 3’ % (‘p_T3’" x (1-‘p_T3")) +

‘theta 4’ * (‘'p_T4’ x(1-"p_T4"))

4

‘theta 0/ *'x_0" % (‘p_TO0" x (1-‘p_T0") - ‘p_CO’'*(1-‘p_CO0’")) +
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‘theta_ 1/ +»'x_1"x(‘p_T1'x(1-‘p_T1l’) - ‘p_Cl’x(1l-‘p_Cl7)) +

‘theta 2"+ 'x_ 2" % (‘p_T2" * (1-‘p_T2") - ‘p_C2"'x(1-‘p_C2")) +
‘theta 3" *'x_ 3"+ (‘p_T3" % (1-‘p_T3") - ‘p_C3"*(1-‘p_C3")) +
‘theta_ 4’ +x'x_4" x (‘p_T4"' x (1-‘p_T4") - ‘p_C4'x(1-‘p_C4"))

)i

matrix gprime=g’;
matrix A=gxinvMxgprime;
\# delimit cr;

local A=A[1,1]

local k = (Mdeff’/*m’)x('A’) * (‘z_alpha’+‘z_beta’)"2) / ‘impact’ "2
di "k==" ‘k’
end\\

As in the simpler case above, the order in which one must enter the paramters is defined by
the positional arguments in the .ado - in this case complicated case, 22 parameters are required.
Here is an example of how to use the programme for a case of p = .05 and m = 30. We know
how to order the parameters by referring to the positional arguments at the beginning of this
code. So, we see to start, the order is p first, then m, then x(, followed by 6y and so on for the

remaining 18 parameters:

discretepowerX 0.05 30 -2 .2 .1 0 -1 .2 .4 .05 0 .2 .5 .11 .2 .6 .15 2 .2

.9 L2\

To clarify, the full syntax for this prgramme is:

discretepowerX $ \rho$ $m$ $x_0$ $\theta_0$ Sp_{C0}$ $\delta_0$ S$x_15
$\theta_1S$ Sp_{C1l}$ $\delta_1S$ S$Sx_2S S\theta_ 2$ $p_{C2}S S\delta_2$
$x_3$ S$\theta_3S Sp_{C3}$ $\delta_3S Sx_4S S\theta_4$ Sp_{C4}s

$\delta_4s \\
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