
Racial Sentencing Disparities and Differential Progression

Through the Criminal Justice System: Evidence From Linked

Federal and State Court Data

Brendon McConnell∗

April 21, 2022

Abstract

Several key actors – police, prosecutors, judges – can alter the course of individuals

passing through the multi-staged criminal justice system. I use linked arrest-sentencing data

for federal courts from 1994-2010 to examine the role that earlier stages play when estimating

Black-white sentencing gaps. I find no evidence of sample selection at play in the federal

setting, suggesting federal judges are largely responsible for racial sentencing disparities. In

contrast, I document substantial sample selection bias in two different state courts systems.

Estimates of racial and ethnic sentencing gaps that ignore selection underestimate the true

disparities by 15% and 13% respectively.
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1 Introduction

Racial disparities in sentence lengths can stem from the influences of multiple decision-makers

involved in the criminal justice system. This involves the police, who choose whom to arrest,

prosecutors, who choose against whom to file charges, as well as the type of charges, and judges,

who choose both the type and severity of the sentence. Of those arrested on federal charges,

less than one half came before a federal judge for sentencing. Only one in three arrestees come

before a state court judge in New Orleans – one of the state court systems I study in this paper.

Thus, with data on sentencing outcomes, researchers are typically observing at most one half

of the original sample of arrestees, raising the possibility of sample selection issues plaguing

sentencing regression estimates.

I use three linked arrest-sentencing datasets for the US criminal justice system (hereafter

CJS) and explicitly model the sample selection problem in order to assess the impact of selection

bias on the estimated Black-white sentencing gap. For the federal system I construct a data

linkage for 1994-2010. For the state system I use both a novel data linkage from 1989-1999 for

the New Orleans District Attorney’s Office, and linked arrest-sentencing data for state courts in

the largest 75 counties.

No prior work has formally accounted for the potential sample selection bias induced by the

multi-stage journey defendants take from arrest through to sentencing when analyzing sentencing

outcomes. In a prescient piece, Klepper et al. (1983) warned of the hazards of estimating

sentencing gaps in the presence of sample selection bias in this setting, carefully spelling out the

implications. If there is both (i) differential stadial progression by race (i.e., disparate treatment

of Black or other minority defendants in the stages preceding sentencing that makes these

individuals more likely to end up at the sentencing stage) and (ii) a sample selection problem

in the sentencing stage (i.e., the unobservables – such as details of the offense that are known

to the prosecutor and judge, but not the econometrician – that drive stadial progression also

impact sentencing outcomes), then this will lead to the Black-white sentencing gap estimates to

be biased. In this paper, I consider the following question: to what extent does the estimate of

the Black-white sentencing gap change if one accounts for sample selection bias?

The linked data I use to tackle this topic allows me to follow individuals from arrest, through

disposition, to sentencing1. For the subset who progress to the sentencing stage, I observe their

sentences. I explicitly model progression through the various stages of the CJS using an ordered

probit model. This forms the basis of an ordered sample selection model (hereafter an ordered

Heckman model), which is an extension of the regular Heckman selection model (Heckman,

1979). The flexibility of this ordered selection models allows for both multiple stages in the

selection equation, and for there to be an outcome equation associated with more than just one

stage.

To model stadial progression, I define a stage-related variable, si, as the furthest an individual

gets in the CJS. For my baseline approach, this progression begins with (0) an initial arrest stage

and moves to (1) filing of charge(s), (2) charging and ends with (3) sentencing2. In extensions,

1The specifics of case disposition is somewhat different in each of the three cases, and I discuss these difference
below.

2In order to add context to this approach, consider an example from my main setting – the federal criminal
justice system. An individual is arrested [stage 0]. The assistant US attorney (AUSA) for the district – the federal
prosecutor – views the case and related evidence and decides to file charges or not. If the case is sufficiently strong,
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I allow for different types of sentencing outcomes.

The exclusion restrictions I use for two of the three empirical settings I consider in this paper

are leave-out area-by-year means of the proportion of individuals who are last seen in all except

one stage. These leave-out means will capture all relevant systemic factors that impact stadial

progression at the area-year level, including the quality of arrest targeting, the nature of the pool

of the local population who serve on grand juries or trial juries, the charging tendencies of the

Assistant US Attorney or state prosecutor, and the average sentencing proclivities of the judges

serving in the area in the given year. For the remaining setting (New Orleans state courts) I use

the leniency of the randomly assigned screening prosecutor as the exclusion restriction. Concerns

regarding the validity of the exclusion restrictions used for such models are often raised. I tackle

these concerns head-on, by testing the validity of the exclusion restrictions I propose, using

the methods developed in recent work by Huber and Mellace (2014). For all three criminal

justice settings that I consider in this paper, there is no sign whatsoever of any violations to the

exclusion restrictions I impose – the p-values for the respective tests are equal to 1 in each case.

Using the universe of U.S. federal sentencing decisions from 1994, I find that Black and

white individuals have similar progression from arrest through to sentencing. In addition, I find

that there is no significant relationship between the unobservables that drive progression across

the stages, and those that determine sentencing. This suggests that federal judges play the

predominant role in driving racial disparities in the federal justice system.

In an extension to my baseline approach for the federal courts, I show that the primary

role of judges remains even when I account for mandatory minimum sentence charging – a

key prosecutorial margin highlighted by the work of Rehavi and Starr (2014). Here I separate

sentencing into two distinct stages – sentencing in absence of a mandatory minimum charge,

and sentencing under a mandatory minimum. Sentence lengths are considerably longer under

mandatory minimum sentences, highlighting the importance of prosecutors on this margin. With

this more nuanced approach, I find some evidence of differential stadial progression by race.

However, there is still no evidence of sample selection bias in the federal setting.

The absence of a sample selection problem at the sentencing stage means that in the federal

system during the time of study, there is no gain to an econometric approach that jointly

accounts for selection into sentencing, and the determination of sentence length. It is adequate

to estimate sentencing gaps using the sentencing stage in isolation. I return to consider the

implications of this null result in Section 5.

In contrast to the federal case, I document differential stadial progression of Black and

white individuals in the 1990s New Orleans court system, a period and locale well-known for

discriminatory practices that received attention by the U.S. Supreme Court for its level of

“deliberate indifference”3. Black arrestees are significantly more likely to progress to sentencing

than their white counterparts. There is also evidence of sample selection bias – the unobservables

that impact progression through the New Orleans court system are positively and significantly

correlated with the unobservables that affect sentence length4. The consequence of this is that

the AUSA files charges and sends the case to a grand jury [stage 1]. The grand jury decide if arrestee will be
charged or not [stage 2]. If charged, around 96% of federal arrestees plead guilty. If the defendant pleads guilty,
or is found guilty, they come before a federal district judge for sentencing [stage 3].

3Justice Ginsburg identified the New Orleans District Attorney’s office “deliberately indifferent” to the rights
of defendants in Connick v. Thompson, 563 U.S. 51 (2011).

4An example of such an unobservable could be a detail of the offense committed e.g., the targeting of a
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the OLS-based Black-white sentencing gap underestimates the true, selection-corrected Black-

white sentencing gap by 15%.

In the final empirical setting, I expand the scope of state court cases I analyze to consider

state courts in the 75 most populous counties in the US5. I allow a separate sentencing equation

for jail and prison sentences, and in addition the Black-white sentencing gap, I also estimate a

Hispanic-white sentencing gap. For Black arrestees, there is no differential stadial progression,

so when estimating the Black-white gap, there is no gain from the selection model. There is,

however, evidence of significant differential stadial progression for Hispanics. Coupled with a

sample selection problem for prison sentencing, this leads to the OLS estimate of the Hispanic-

white prison sentencing gap being underestimated by 13%.

I conclude the paper with a simulation exercise to build on what I learn in this work, and

consider the pitfalls of a commonly used alternative approach to dealing with sample selection –

the imputation method or “Brown” estimator6, whereby one imputes a very low outcome value

for all non-participants, and then estimates the relevant parameters using median regression.

The implicit assumption here is that sample selection is entirely and overwhelmingly positive,

and that it is correct to assign all non-participants an outcome value below the median. One

can see examples of this approach in the work of Neal and Johnson (1996) for the labor market7

and Rehavi and Starr (2014) for the criminal justice system.

Here I make one simple, albeit important, point – unless one is faced with strong, positive

sample selection, it is unwise to simply apply the imputation method in the hope of accounting

for selection bias. As my simulations make clear, this approach can, in fact, lead to a larger bias

than that of ignoring the sample selection problem altogether. This is particularly pertinent in

the federal sentencing setting, where I do not find any evidence of a sample selection problem.

Racial disparities in criminal justice has been studied in many fields including economics,

law, criminology and sociology. I make a novel contribution to this literature by documenting

the consequences of differential stadial progression by race, and sample selection, in a selection

model framework that admits the multiple stages of the CJS, and allows for the estimation of

sentencing race gaps at different levels (e.g., jail and prison). Prior research has considered

the role of decisions-makers or selection at different stages in isolation. One can find several

papers that implement a Heckman selection model when considering custodial (court-imposed)

vs. non-custodial sentences at the sentencing stage (Steffensmeier and Demuth, 2001; Ulmer

and Johnson, 2004). Other methods include modeling selection with a hazard rate term when

analyzing outcomes in a given stage to account for selection from the previous stage alone (Leiber

and Mack (2003) and Wooldredge and Thistlewaite (2004)). Rehavi and Starr (2014) show that

severity of the prosecutor charge largely renders statistically insignificant racial disparities at

particularly vulnerable victim, or an especially callous action carried out during the offense. If these details are
known to the key actors in the CJS – the screening prosecutor, the sentencing prosecutor, the judge – but not the
econometrician, then such details would be an example of the unobservables that impact both stadial progression,
and the sentencing outcome.

5These counties account for more than a third of the United States population and approximately half of all
reported crimes.

6Chandra (2000, 2003) refers to this approach as the “Brown” estimator, based on the seminal work by Brown
(1984), who was interested in the related question of how to correct Black-white earnings ratio when faced with
differential non-participation by race.

7A later follow-up piece – Johnson et al. (2000) – uses panel data to probe the extremely strong assumption
underlying this approach.
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the judicial sentencing stage. Policy-makers have thus focused heightened scrutiny to the role

that prosecutors can play in exacerbating racial disparities. None of these papers consider the

global progression from arrest to sentence, nor seek to understand the role of sample selection

bias.

I make a second novel contribution to the applied sample selection literature, by cautioning

against the “blind” use of imputation methods – i.e., using these methods, which assume the

strongest form of sample selection bias, without knowing about how much of a sample selection

problem exists – to deal with sample selection concerns.

This paper also adds to the literature that highlights the importance of accounting for sample

selection when estimating outcome gaps across protected group status e.g., race and gender gaps

in labor market outcomes (Chandra, 2000; Mulligan and Rubinstein, 2008; Bar et al., 2015).

2 Data and Setting

2.1 Federal CJS

I use linked arrest-sentencing data from US Federal courts spanning the fiscal years 1994-2010

(Bureau of Justice Statistics, 2016), with the primary focus on the 1994-2003 period. The start-

ing point is determined by data availability. The end point of 2003 was chosen to avoid mixing

sentencing outcomes from before and after the Booker reforms – a change in how sentencing

guidelines were imposed in the federal system8.

The data appendix in Appendix B details how I link data across the various stages. In

selecting my sample, I consider only adult males who are either Black or white9. Due to differ-

ential treatment under federal law, I remove all non-citizens. Following Rehavi and Starr (2014),

who outline several reasons to do so, I omit all immigration arrests. I remove arrest cases for

reasons other than a criminal offense (material witness warrants, parole or probation violation)

and focus on the 50 US States and the District of Columbia.

Summary statistics are presented in Panel A of Table 1 for my sample of interest. Just under

half of Black and white arrestees end up facing a sentencing judge in my data. The p-values in

column 4 show that there are no significant racial differences at either the start- or the end-point

of the federal system. There are, however, large and statistically significant differences at sen-

tencing. Black defendants are 8.7 percentage points more likely to get a custodial sentence, and

the average custodial sentence for Black defendants is almost double that of white defendants.

2.2 New Orleans State CJS

For New Orleans courts data, my reference period is 1989-1999. I make comparable, though

not identical, sample selection decisions when working with this data. My sample of interest is

Black and white adult male arrestees. Given that I use information on the screening prosecutor

to whom arrestees are assigned, I also require arrestees to face a prosecutor whom I see at least

ten times.

8See Section A.5.2 for more detail on these reforms.
9I do not observe ethnicity at the arrest stage.
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Table 1: Summary Statistics

(1) (2) (3) (4) (5) (6) (7)

White Black Hispanic B-W
Gap

p-Value
of B-W

Gap

H-W
Gap

p-Value
of H-W

Gap

A.) Federal Courts

Observations 219,889 133,763

Sentencing Stage

0 – Arrest .341 .338 -.004 [0.882]
1 – Filing .114 .120 .006 [0.057]
2 – Charging .062 .053 -.008 [0.001]
3 – Sentencing .483 .489 .006 [0.819]

Sentencing Outcomes

Custodial Sentence .831 .918 .087 [0.000]

Sentence Length (Months) 46.4 86.9 40.5 [0.000]
(64.8) (95.6) (2.6)

B.) New Orleans

Observations 21,720 128,254

Sentencing Stage

0 – Arrest .521 .494 -.027 [0.001]
1 – Filing .144 .108 -.036 [0.000]
2 – Charging .073 .054 -.019 [0.000]
3 – Sentencing .262 .344 .081 [0.000]

Sentencing Outcomes

Custodial Sentence .941 .976 .035 [0.000]

Sentence Length (Months) 25.7 43.8 18.1 [0.000]
(61.6) (189.9) (1.2)

C.) Large Urban Counties

Observations 28,975 43,917 23,165

Sentencing Stage

0 – Arrest and Filing .244 .302 .235 .058 [0.000] -.009 [0.712]
1 – Case Diversion/Deferral .075 .041 .068 -.033 [0.000] -.006 [0.416]
2 – Charging .007 .014 .007 .007 [0.001] -.000 [0.942]
3 – Jail Sentencing .437 .369 .432 -.068 [0.000] -.005 [0.739]
4 – Prison Sentencing .237 .274 .258 .037 [0.004] .021 [0.187]

Sentencing Outcomes

Jail Sentence .375 .350 .449 -.024 [0.260] .074 [0.001]

Prison Sentence .303 .384 .344 .081 [0.000] .041 [0.003]

Jail Sentence Length (Months) 3.3 3.8 4.1 0.5 [0.032] 0.8 [0.015]
(5.3) (6.5) (5.2) (0.2) (0.3)

Prison Sentence Length (Months) 54.0 61.9 54.7 7.8 [0.030] 0.7 [0.821]
(114.2) (124.1) (121.9) (3.5) (2.9)

Notes: Means, standard deviations for continuous variables in parentheses, p-values in square brackets. When testing
differences across racial and ethnic groups, standard errors are clustered at a.) district level for the federal CJS data, b.)
individual level for New Orleans state courts and c.) county level for the large urban counties state courts data. Given the
2-stage stratified sample design of the data collection for the large urban counties state courts data, weights are used in
calculating the summary statistics presented in Panel C.).
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Panel B of Table 1 presents summary statistics for my sample of interest. In the New

Orleans courts, one can see significant racial differences at each stage of the CJS, immediately

contrasting with the federal system. The cumulative effect of this is a large and significant

Black-white difference – 8.1 percentage points or 31% relative to the white proportion – in the

proportion of arrestees that progress to the final sentencing stage. For those who come before a

sentencing judge, Black defendants are more likely to receive a custodial sentence, and receive

substantially longer sentence lengths.

2.3 75 Largest Counties State CJS

The final setting I consider are state courts in the 75 most populous counties, with data sourced

from the State Courts Processing Statistics series (Bureau of Justice Statistics, 2014). A two

stage-sampling process is implemented in creating this data, hence I use the supplied weights in

all analysis. The data are different from the previous two cases along several core dimensions.

First, the data identifies ethnicity as well as race, hence I can also estimate Hispanic-white

sentencing gaps in this setting. Next, the starting population of interest differs from the other

data – here, felony court filings are used to identify relevant individuals. This means the stage

variable looks slightly different (previously I could separately identify individuals who were

arrested but has their cases dismissed, and those whose cases progressed to the filing stage.).

Finally, the data allows me to identify individuals who face jail and prison sentences. As one

can see in Panel C of Table 1, the associated sentence lengths for the two cases are of a different

of magnitude, hence I specify these as two distinct stages.

3 Empirical Specification

The ordered Heckman approach extends the selection equation of the standard Heckman se-

lection model (Heckman, 1979) from a probit to an ordered probit. This allows me to jointly

estimate i.) the role of race in individuals’ progression through the criminal justice system and

ii.) racial sentencing disparities in sentencing, conditional on progressing to the sentencing stage.

The first component to the ordered Heckman model is the selection equation, which is where

I focus on stadial progression, and define stage, si, as the furthest an individual advances in the

CJS. For my baseline approach, this progression begins with (0) an initial arrest stage and moves

to (1) filing of charge(s), (2) charging and ends with (3) sentencing10. I model this progression

10In the sentencing stage, an individual may receive a non-custodial sentence of a fine or probation (which I
code as a sentence length of zero). Some papers, focusing solely on the sentencing stage, use a standard Heckman
selection model to separately account for the zeroes associated with fines and probation and the positive sentences.
I do not want to do that here, but the ordered Heckman approach does admit this approach.
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with an ordered probit:

s∗i = X
′
iα1 + Z

′
s,iα2 + ξi

= Z
′
iα+ ξi ;

si =



0 if −∞ < s∗i ≤ µ1 [Arrest]

1 if µ1 < s∗i ≤ µ2 [Filing]

2 if µ2 < s∗i ≤ µ3 [Charging]

3 if µ3 < s∗i <∞ [Sentencing] ,

(1)

where Xi is a vector of variables available at the arrest stage – and thus available for all indi-

viduals in the data – and Zs,i is the exclusion restriction. This vector enters only the selection

equation and not the sentencing (or outcome) equation. I detail the specifics of these variables

for both the federal and state systems separately below.

The second component to the ordered Heckman model is the sentencing equation:

yi =

X
′
iβ + εi if si = 3

missing otherwise ,
(2)

where yi, which is only observed if the individual reaches the sentencing stage, is the log of

sentence length in months11, and εi has mean zero, variance σ2 and is bivariate normally dis-

tributed with ξi with correlation ρ. In all of the selection-corrected models that I estimate, I

present ρ and a test of whether it is significant or not, as this reflects whether or not there is

sample selection bias in the sentencing equation. I estimate equations (1) and (2) jointly using

FIML12,13.

There is an element of my approach that is somewhat constraining. Given that Xi should be

a subset of Zi for identification purposes, the vector Xi is a set of arrest-stage offense type and

offender characteristics. It would not be logical to include variables, such as criminal history or

presumptive sentence – commonly used control variables in a sentencing equation – as these are

available only for those individuals that I observe at sentencing. The availability of such variables

would thus perfectly predict reaching the sentencing stage. The Xi vector is context-specific,

and hence described in full in the table notes.

In the federal data, the exclusion restrictions in Zs,i are leave-out district-by-year means of

the proportion of individuals who are last seen in stage 0, stage 1 and stage 314. These leave-out

means will capture all relevant systemic factors that impact stadial progression at the district-

year level, including the quality of arrest targeting, the nature of the pool of the local population

11In order to account for the zero sentence length observations, I implement a shifted log transform, whereby
I add 1 to each sentence length. In order to assess the validity of this, in Sections A.5.1 and A.6 I present all core
results using an alternative transform – the inverse hyperbolic sine transformation. The results presented in that
section are extremely similar to those of my core specification, which assuages any concerns regarding specific
functional form assumptions. That said, I do not provide results for the sentence length in levels – the extreme
right skewness of sentence lengths causes severe issues for the maximum likelihood routine.

12To implement the ordered Heckman routine, I use the user-written Stata package of Chiburis and Lokshin
(2007).

13The parameter estimates from the FIML procedures are as good as identical to those from the two-step
approach, hence I present the more efficient FIML estimates.

14The combined proportions sum to one, hence I omit stage 2.
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who serve on federal grand juries, the charging tendencies of the Assistant US Attorney, and

the average sentencing proclivities of the judges serving in the district in the given year15.

In the New Orleans state court system, a randomly assigned screening prosecutor decides

whether or not to progress the case from the arrest stage. I use this as the basis for the exclusion

restrictions in Zs,i, which are the leave-out screening prosecutor average interacted with a non-

missing dummy, and a dummy for missing information on screening prosecutor16.

For the state courts in large urban counties, the exclusion restrictions in Zs,i are leave-out

county-by-year means of the proportion of individuals who are last seen in stage 1-4, with stage

0 serving as the omitted category. The rationale for this choice of exclusion restrictions is the

same as for federal courts.

4 Results

4.1 Federal CJS

Table 2 presents the main set of results based on the federal courts. Column 1 shows the OLS

estimate for the raw sentencing gap, whereas column 2 shows the conditional Black-white gap.

Moving from column 1 to column 2, I see that the sentencing gap is attenuated to a large degree

by the inclusion of a rich set of arrest-level defendant and offense characteristics. The estimated

sentencing gap falls from .831 to .349, a 58% decline. The conditional gap is still extremely large

and highly statistically significantly different from zero17.

Column 3 shows the coefficient estimate for the Black indicator from the linear index model

that underlies the ordered probit. There is no evidence of differential stadial progression by race

–the Black coefficient from the selection equation is small and statistically insignificant. This

corroborates the lack of racial differences in the unconditional patterns I see in the summary

statistics in Panel A of Table 1.

Column 4 presents the results from an ordered Heckman specification, where equations (1)

and (2) are estimated jointly. First note that when jointly estimating the two equations, I

again find no difference in racial progression across the stages. Second, the estimate of ρ – the

correlation between the unobservables that impact stadial progression and sentencing outcomes

– is extremely small, and has a p-value of .52. For these two reasons combined, the sentencing

gap I estimate using a selection adjusted approach is identical to what I found using a simple

OLS.

This null result is useful in highlighting that both differential stadial progression by race and

evidence of sample selection bias are required for the ordered selection approach to yield different

estimates from a standard OLS. I expand on this point in a simulation exercise in Section .

15I can separately identify the parameters associated with the exclusion restrictions – α2 – in the presence of
district and year fixed effects, as the level of variation for Zs,i is the district-year.

166.6% of the sample have missing information on screening prosecutor. Instead of just dropping these in-
dividuals, I assign them a value of zero for the leave-out screening prosecutor mean, and then create a dummy
indicating missing prosecutor information. The results are robust to the alternative approach of merely dropping
these observations.

17The conditional gap that I document is larger than other papers in the literature. For instance, using a
sample that is a subset of the one used here, McConnell and Rasul (2021) document an unconditional Black-white
sentencing gap of a similar magnitude, but a conditional sentencing gap that is smaller by a factor of 3. The
key difference is their paper uses a richer set of covariates, some of which are determined post-arrest, which my
empirical strategy precludes.
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Finally, the results in column 5 serve as a sensitivity analysis, and confirm my core results.

Here I binarize the variable si, assigning non-sentencing stages a value of zero, and the sentencing

stage a value of one. I then implement a standard sample selection model.

Table 2: Black-White Sentencing Disparities in the Federal CJS

(1) (2) (3) (4) (5)

OLS OLS Ordered
Probit

Ordered
Heckman

Heckman

Sentencing Equation

Black .831*** .349*** .349*** .349***
(.0448) (.0214) (.0214) (.0214)

Selection Equation

Black .0116 .0116 .00941
(.0114) (.0114) (.0107)

Full Set of Controls X X X X

sentenceW 46.4 46.4 46.4 46.4

B-W gap: exp(βBlack)-1 1.3 .418 .215 .418 .418

ρ .0185 .0107
(.0284) (.026)

p-value: ρ = 0 .52 .68
p-value: Exclusion Restriction(s) .000 .000 .000
R2 .0595 .419
Observations 186,436 186,436 388,123 388,123 388,123

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The dependant variable in the sentencing equation is the
log(sentence length in months +1). The +1 is to allow for zero sentence lengths (fines, probation) in the sentencing stage.
In the selection equation, the dependant variable is stage, which takes values 0, 1, 2 or 3. Th exception is in specification
6, where I binarize the stage variable (stages 0-2 = 0, stage 3=1). All specifications, with the exception of specification 1,
include the following control variables: district dummies, year of arrest dummies, arrest offence code dummies, age decile
dummies, marital status dummies and state/country of birth dummies. The exclusion restrictions for the ordered probit
selection model are leave-out district×year means of the proportion of individuals who are last seen in stage 0, stage 1 and
stage 3. For the probit selection model, the exclusion restriction is the leave-out district×year mean of the proportion of
individuals who are last seen in stage 3. Standard errors are clustered at district level.

4.1.1 Extending the Approach to Account for Mandatory Minimum Charging

The use of statutory mandatory minimum sentence charging is considered to play a key role

in determining the Black-white sentencing gap (Rehavi and Starr (2014)). In this section, I

extend my baseline approach outlined in Section 3, in order to incorporate mandatory minimum

charging behavior of prosecutors. To do so, I split the final, sentencing stage into two stages

– sentencing absent of a mandatory minimum, and sentencing with a mandatory minimum. I

present the results of this extension in Table A1, and detail this approach in Section A.1. The key

findings of this extension, is that although this richer model highlights slight differential stadial

progression by race, there is still no sample selection problem in either of the sentencing stages,

and thus OLS estimates of the sentencing gaps are sufficient here to assess the Black-white

sentencing gap.

4.2 New Orleans State CJS

I now move to the New Orleans state court system, presenting my core results in Table 3.

Moving from column 1 to 2, I see that differences in arrest offense and individual characteristics
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accounts for over half of the raw Black-white sentencing differential, yet a large conditional gap

still remains. So far, the analysis follows a similar pattern to the federal case above.

Where the New Orleans system differs becomes apparent in column 3 – I see a positive

and significant coefficient on Black in the ordered probit equation, which informs us that the

unconditional pattern of differential stadial progression by race that I document in Panel B of

Table 1 persists even when I condition on a rich set of controls.

Turning to column 4, I note a second point of departure from the federal estimates. The

estimate of ρ is large, and highly statistically significantly different from zero, indicating a sample

selection problem. That is, the unobservables that determine individuals’ progression through

the stages of the New Orleans CJS are positively correlated with those that impact sentence

severity. Given both the higher likelihood of ending up at the sentencing stages that Black

individuals face, and the presence of positive sample selection bias, the coefficients I estimate

using the ordered sample selection procedure yield a larger Black-white sentencing gap. Not

accounting for differential stadial progression leads to an underestimation of the Black-white

sentencing gap by 15%.

In the final column I again present a sensitivity analysis of my sample selection approach,

simplifying the ordered Heckman model to a standard Heckman by binarizing si as I did before.

The results tell the same story.

Table 3: Black-White Sentencing Disparities in the New Orleans State CJS

(1) (2) (3) (4) (5)

OLS OLS Ordered
Probit

Ordered
Heckman

Heckman

Sentencing Equation

Black .489*** .225*** .26*** .268***
(.0197) (.0152) (.0157) (.0158)

Selection Equation

Black .133*** .133*** .188***
(.0126) (.0126) (.0134)

Full Set of Controls X X X X

sentenceW 25.7 25.7 25.7 25.7

B-W gap: exp(βBlack)-1 .631 .253 .297 .307

ρ .424 .364
(.0208) (.0237)

p-value: ρ = 0 .000 .000
p-value: Exclusion Restriction .000 .000 .000
R2 .0133 .524
Observations 49,792 49,792 149,970 149,970 149,970

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The dependant variable in the sentencing equation is the
log(sentence length in months +1). The +1 is to allow for zero sentence lengths (fines, probation) in the sentencing stage.
In the selection equation, the dependant variable is stage, which takes values 0, 1, 2 or 3. Th exception is in specification
6, where we binarize the stage variable (stages 0-2 = 0, stage 3=1). All specifications, with the exception of specification 1,
include the following control variables: arresting agency dummies, lead arrest charge dummies, arrest year dummies, age
decile dummies, a dummy for multiple arrest charges, and a criminal history dummy. The exclusion restrictions for both
the ordered probit, and probit, selection models are the leave-out screening prosecutor mean interacted with a non-missing
dummy, and a dummy for missing information on screening prosecutor. Standard errors are clustered at individual level.
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4.3 State Courts in Large Urban Counties

I turn now to the final setting I consider in this work – state courts in the most populous 75 urban

counties. Given the nature of the data, I augment my empirical specification slightly to better

fit the setting. This amounts to an extension of my baseline ordered Heckman specification,

whereby I allow two sentencing stages – one for jail and another for prison sentences18.

Table 4 presents the key results for these state courts. The OLS results in columns 1 and

2 highlight the fact that both Black and Hispanic defendants experience a sentencing penalty

relative to their white counterparts, for both jail and prison sentences. Tests of equality of

parameters cannot be rejected in either setting. Column 3 presents the first indication of a

divergence between the two minority groups – Hispanics experience an additional penalty re-

garding differential stadial progression, whereas Black individuals are as likely as their white

counterparts to progress through the CJS stages.

The selection parameter relevant for jail sentencing – ρ3 – is not statistically significantly

different from zero, hence there are no differences between the OLS and ordered Heckman

parameters for jail sentencing. There is, however, evidence of positive sample selection for

prison sentencing in the state court system. The p-value for ρ̂4 is .009. Given the combination of

differential stadial progression for Hispanic arrestees, and the finding of positive sample selection,

I document evidence of a selection-corrected Hispanic-white sentencing gap that is 15% larger

than the non-corrected OLS estimate. Given the lack of differential stadial progression for

Black individuals, the selection-corrected Black-white sentencing gap is no different to the one

estimated by OLS. Once I account for selection, I find that the Hispanic-white gap is statistically

significantly larger than the Black-white gap for prison sentences at conventional levels. All key

patterns documented here are replicated if I assume a different functional form specification for

sentence length. Table A9 presents the results based on the inverse hyperbolic sine transform.

5 The Sample Selection Problem

5.1 Testing the Validity of the Exclusion Restrictions

The sample selection models that I use in this study, although no longer particularly en vogue

in the modern applied landscape, are particularly well-suited to studying the multi-stage CJS,

where a key outcome of interest occurs only for those who enter the final stage(s). The model

enables one to view, in a parsimonious manner, estimates of (i) the differential stadial progression

of black arrestees relative to their white counterparts, (ii) the sign and magnitude of the sample

selection problem and (iii) the selection-corrected Black-white sentencing gap.

A key reason that sample selection models are not commonly used is the difficulty in finding

a credible exclusion restriction for the selection equation. I formally test the validity of the

respective exclusion restrictions I impose in the three empirical settings I study in this work,

using the tests proposed by Huber and Mellace (2014). In all settings I find overwhelming

support for the validity of the exclusion restrictions I impose. The results of these tests can be

found in Table A2, and the test approach described in Section A.3.

18I detail the precise nature of this extension in Section A.2
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Table 4: Black-White Sentencing Disparities in State Courts in Large Urban Counties

(1) (2) (3) (4) (5)

OLS Ordered Ordered
Probit Heckman

Jail Prison Jail Prison

Sentencing Equation

Black .113*** .0841*** .113*** .0827***
(.0154) (.0259) (.0151) (.0264)

Hispanic .159*** .129*** .157*** .147***
(.0281) (.0308) (.0306) (.0332)

Selection Equation

Black -.00147 -.0014 -.0014
(.0181) (.018) (.018)

Hispanic .0419*** .0412*** .0412***
(.0135) (.0135) (.0135)

sentenceW 3.28 53.7 3.28 53.7

B-W gap: exp(βBlack)-1 .12 .0877 .12 .0863
H-W gap: exp(βHispanic)-1 .172 .138 .17 .159

ρ3 -.057 -.057
(.166) (.166)

ρ4 .424 .424
(.161) (.161)

p-value: ρ3 = ρ4 = 0 .064 .064
p-value: Exclusion Restrictions .000 .000 .000

p-value: βBlack = βHispanic .141 .089 .187 .023
p-value: αBlack = αHispanic .021 .023 .023

R2 .218 .333
Observations 38,939 24,945 96,057 96,057 96,057

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. Standard errors are clustered at county level. The
dependant variable in the sentencing equation is the log(sentence length in months +1). The +1 is to allow for zero
sentence lengths (fines, probation) in the sentencing stage. In the selection equation, the dependant variable is stage,
which takes values 0, 1, 2, 3 or 4. All specifications include the following control variables: county dummies, year of arrest
dummies, most serious arrest offence code dummies, second most serious arrest offence code dummies, dummies for
categories of the count of arrest charges, age decile dummies, dummies for most serious prior arrest, prior failure to appear
in court, most serious prior conviction and a dummy for prior adult felony conviction for a violent offense. The exclusion
restrictions for the ordered probit selection model are leave-out county×year means of the proportion of individuals who
are last seen in stage 1 and stage 2. Given the 2-stage stratified sample design, SCPS-supplied weights are used in all
analysis, thus yielding estimates for the 75 most populous counties in the month of May.

5.2 A Simulation Exercise

Here I present a simulation exercise, where I compare the performance of three different estima-

tors – OLS, the imputation estimator and the Ordered Heckman estimator – under a variety of

different sample selection settings. The aim of this exercise is to gain a better understanding of

how the different estimators perform in scenarios that mimic those in the criminal justice system

in the US. The exercise highlights the extremely poor performance of the imputation estimator

in all scenarios I consider.

The imputation or “Brown” estimator is an alternative approach to dealing with sample se-

lection. Here, one imputes a very low outcome value for all non-participants, and then estimates

the relevant parameters using median regression. This approach does not require an exclusion

restriction or an explicit model for selection. It does however require a very strong assumption

– that selection is so profusely positive, that one can allocate all missing outcome values to a
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sufficiently low value such that all imputed outcomes will be below the median. One can see

examples of this approach in the work of Neal and Johnson (1996) for the labor market and

Rehavi and Starr (2014) for the criminal justice system.

I give a brief overview of the simulation approach here, and cover the approach fully in

Section A.8. The nub of this exercise is to simulate a simplified version of equations (1) and (2),

and then vary key parameters (specifically those governing (i) the degree of differential stadial

progression by race – α1 below, and (ii) the degree of sample selection bias – ρ). I simulate data

with a sample size of 2,000 – 1,000 white arrestees and 1,000 Black arrestees. I specify the data

generating process (DGP) for the selection equation as:

s∗i = α1Blacki + α2Severityi + α3Zi + ξi (3)

In mapping s∗i to si, I chose cutoffs to ensure the following proportions in the four stages: 0.20,

0.05, 0.05 and 0.70 for stages 0, 1, 2 and 3 respectively, meaning that 70% of arrestees will

progress to the sentencing stage. I specify the DGP for the sentencing equations as:

yi =

β0 + β1Blacki + β2Severityi + εi if si = 3

missing otherwise.
(4)

The errors ξ and ε are constructed as standard bivariate normal variables with correlation ρ.

For the imputation method, I assign imputed sentences of those 30% of arrestees who do not

make it to the sentencing stage to the lowest sentence observed for those who are sentenced.

Table 5 presents the results for three different estimators (OLS, imputation estimators, or-

dered Heckman19) of the parameter β1 under a variety of different environments defined by

(i) the stadial progression and (ii) sample selection parameters. In all cases the true value of

β1 = .10.

The core message from this table is that the imputation method is dominated by the ordered

Heckman model, but also, in almost all cases, by an OLS approach whereby one ignores any

selection concerns. Put differently simply estimating the sentencing gap with OLS without any

attempt to correct for sample selection is almost always better than the imputation method.

As one moves down Table 5, the sample selection problem – governed by ρ – becomes

monotonically less of an issue. The final four rows show the estimates of the Black-white

sentencing gap when there is no sample selection problem, and is thus a good proxy for the

federal courts setting. Focusing on column 4 – the median regression results – one can note

a severe upwards bias to the imputation based results, particularly for cases when there is

differential stadial progression by race. The overestimate is due to the assumption inherent

in the imputation approach – that selection is perfectly positive – and thus all of those who

do not reach the sentencing stage, a group who are disproportionately white (when α1 > 0),

are allocated the lowest observed sentence. Even in the final row, where there is no differential

stadial progression and no sample selection problem, the imputation method is still a bad choice,

as it gives the wrong standard errors. This is due to the imputed mass point at the far left of

the (imputed) sentencing distribution.

19I cannot estimate the ordered Heckman model for the subset of cases where ρ = 1, i.e., where selection is
perfectly positive.
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These simulation results should caution against the siren song of the seemingly innocuous

assumptions of the imputation method.

6 Conclusion

Only a sub-sample of individuals who are arrested make it to sentencing. Multiple decision-

makers can impact the progression of individuals through the various stages of the criminal

justice system. If there are racial disparities in the progression across the CJS stages, then

this can bias the measurement of race gaps in sentencing due to sample selection bias. This

paper presents and illustrates a methodology to overcome this bias using using linked arrest-

sentencing data for both US federal and state courts systems. My approach offers a way to

potentially identify sources of racial disparities.

I conclude the paper with a simulation exercise that will hopefully caution against the use

of an alternative approach to account for sample selection at the sentencing stage – the impu-

tation approach. In this exercise I highlight severe biases to the so-called “Brown” estimator,

particularly in the setting of mild to no sample selection problem. This particular setting is

a good approximation of the federal court system over the entire period of study. The core

lesson to take from this exercise is that the imputation approach is globally dominated by the

ordered selection model I favor in this paper. Although I show significant biases to using OLS

in previous sections, even OLS is preferable to the imputation approach in most scenarios.

With newly developed methods – such as those of Huber and Mellace (2014) – that allow the

practitioner to test the underlying assumptions of the sample selection model, I argue that it is

advisable to estimate such models in the sentencing domain. Whether one ultimately will decide

to use such models will depend on the context, but it is certainly better to first understand the

selection landscape, and then proceed informed.
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Table 5: Monte Carlo Simulations – The Imputation Method for Sample Selection Problems

(1) (2) (3) (4) (5)

Parameter Choices

ρ α1 β̂OLS
1 β̂50

1 β̂OH
1

1.) 1 .50 -.002 .267
(.048) (.083)

2.) 1 .20 .059 .160
(.048) (.080)

3.) 1 .10 .079 .124
(.048) (.080)

4.) 1 0 .100 .089
(.048) (.079)

5.) .50 .50 .049 .365 .100
(.053) (.097) (.054)

6.) .50 .20 .079 .200 .099
(.053) (.093) (.053)

7.) .50 .10 .090 .146 .100
(.052) (.092) (.052)

8.) .50 0 .100 .091 .100
(.052) (.091) (.053)

9.) .25 .50 .074 .398 .100
(.053) (.101) (.054)

10.) .25 .20 .089 .214 .099
(.053) (.095) (.054)

11.) .25 .10 .095 .153 .100
(.054) (.094) (.054)

12.) .25 0 .100 .091 .100
(.053) (.094) (.053)

13.) 0 .50 .100 .426 .100
(.054) (.102) (.055)

14.) 0 .20 .100 .225 .100
(.054) (.096) (.054)

15.) 0 .10 .100 .159 .100
(.054) (.095) (.054)

16.) 0 0 .100 .092 .100
(.054) (.096) (.054)

Notes: Results based on 10,000 simulation runs. The target parameter – β1 – is .1 for all simulations. The other fixed
parameters are: α2 = α3 = β2 = 1 and β0 = ln(40). Column 3 shows the mean and bootrapped standard error of β̂1 from
an OLS regression based on the sentencing stage alone. Columns 4 presents the mean and bootrapped standard error of
β̂1 from a quantile regression for the 50th percentile based on an imputation approach whereby all missing sentences are
allocated the lowest value of sentence length in each iteration run. Column 5 shows the mean and bootrapped standard
error of β̂1 from an ordered Heckman regression. Refer to Table A11 in Section A.8 for a more extensive set of quantile
regression results.
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Appendix

A Additional Results

A.1 Accounting for Sentences With Mandatory Minima – An Extension

In this section, I extend the approach I propose in Section 3, in order to incorporate mandatory

minimum charging behavior of prosecutors within my framework. To do so, I split the final stage

of the ordered probit (see Equation 1) into two stages – sentencing absent of a mandatory min-

imum, and sentencing with a mandatory minimum. Average sentence lengths are considerably

longer under mandatory minimum sentence, which suggests a natural ordering when assigning

values for the extended stage variable. This results in my estimating conditional sentencing gaps

separately based on the presence of a mandatory minimum, and I use exclusion restrictions to

aide identification of the factors driving mandatory minimum regime membership.

The modified selection equation can be written as:

s∗i = X
′
iα1 + Z

′
s,iα2 + ξi

= Z
′
iα+ ξi ;

si =



0 if −∞ < s∗i ≤ µ1 [Arrest]

1 if µ1 < s∗i ≤ µ2 [Filing]

2 if µ2 < s∗i ≤ µ3 [Charging]

3 if µ3 < s∗i ≤ µ4 [Sentencing, Mandatory Minimum Absent]

4 if µ4 < s∗i <∞ [Sentencing, Mandatory Minimum Present] ,

(5)

where, as before, Xi is a vector of variables available at the arrest stage – and thus available

for all individuals in the data – and Zs,i is the exclusion restriction. I modify the sentencing

component, to allow for sentencing to occur in the two final stages:

yi =


X

′
iβ3 + εi,3 if si = 3

X
′
iβ4 + εi,4 if si = 4

missing otherwise ,

(6)

I present the results of my extended ordered Heckman approach in Table A1 below.

The first point to note, viewing columns 1 and 2, is that the Black-white gap is larger for

sentences with a mandatory minimum attached, confirming that prosecutorial charging plays a

role in generating racial sentencing differentials.

Substantial racial sentencing gaps are, however, also present when there are no mandatory

minima attached to the case. Some studies suggest that controlling for the prosecutor charge

decision, racial sentencing gaps disappear.20 The presence of significant racial sentencing gaps

20I conducted a set of analyses to relate my findings to those of Rehavi and Starr (2014). There are two key
differences that drive the divergence between my respective findings. First, Rehavi and Starr (2014) omit offenses
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Table A1: Black-White Sentencing Disparities in the Federal CJS

(1) (2) (3) (4) (5)

OLS Ordered Ordered
Probit Heckman

Mandatory
Minimum

Absent

Mandatory
Minimum
Present

Mandatory
Minimum

Absent

Mandatory
Minimum
Present

Sentencing Equation

Black .248*** .316*** .248*** .316***
(.0234) (.0193) (.0243) (.019)

Selection Equation

Black .0549*** .0549*** .0549***
(.0106) (.0106) (.0106)

ρ3 -.0091 -.0091
(.0717) (.0717)

ρ4 .0044 .0044
(.0508) (.0508)

p-value: ρ3 = ρ4 = 0 .98 .98
p-value: Exclusion Restriction(s) .000 .000 .000
R2 .313 .206
Observations 120,772 65,664 388,123 388,123 388,123

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The dependant variable in the sentencing equation is the
log(sentence length in months +1). The +1 is to allow for zero sentence lengths (fines, probation) in the sentencing stage.
In the selection equation, the dependant variable is stage, which takes values 0, 1, 2, 3 or 4. All specifications, include the
following control variables: district dummies, year of arrest dummies, arrest offence code dummies, age decile dummies,
marital status dummies and state/country of birth dummies. The exclusion restrictions for the ordered probit selection
model are leave-out district×year means of the proportion of individuals who are last seen in stage 0, stage 1 , stage 3 and
stage 4. Standard errors are clustered at district level.

for both sets of defendants suggests that federal judges play an important role in racial disparities

even when accounting for charges with a mandatory minimum attached.

In a departure from the baseline results in Table 2, the Ordered Probit coefficient for Black

is now positive and significant, highlighting that Black defendants are more likely to be face a

mandatory minimum sentence charge.

As is the case in my baseline framework, the ordered Heckman makes no difference to the

Black-white sentencing gap – the estimates from columns 4 and 5 are identical to their OLS

counterparts in columns 1 and 2. The reason for this is that, even though there is differential

stadial progression by race, there is no correlation between the unobservables that affect progres-

sion and those that drive sentence length – ρ4 and ρ5 are extremely small, and the p-value of a

joint test of ρ4 and ρ5 is 0.98. This result highlights again that in order for the ordered Heckman

approach to deliver estimates that differ from a simple OLS, there needs to be differential racial

relating to drugs, child pornography, traffic offenses and liquor offenses from their main sample. When I do this,
my sample size reduces by almost half. This sample selection decision also reduces the Black-white sentencing
gap, an effect driven almost entirely by the omission of drug-related offenses. Second, Rehavi and Starr (2014)
use a different set of control variables, most notably for the Black-white sentencing differential, the defendant’s
criminal history. There are significant differences across the races in the criminal history distribution (part of
which may reflect disparate racial treatment with previous interactions with the criminal justice system), and
controlling for criminal history vastly reduces the Black-white sentencing differential. It is worth noting that my
ordered Heckman approach precludes the possibility of controlling for criminal history, which is only available for
those who progress to the sentencing stage. Our approach does, however, allow for a correlation between the error
terms in the selection and outcome equations. This approach will thus account for the role of criminal history in
determining the sub-sample of those who make it to the final sentencing stages.
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progression through the CJS and a significant correlation between the unobservables influencing

progression and those influencing sentencing outcomes.

A.2 Allowing for two Sentencing Levels – An Extension

The nature of the large urban county state court data differs somewhat from the other two cases.

The data tracks cases from arrest to sentencing for individuals against whom a felony case has

been filed. This is already a point of departure, as in the other settings I specify arrest and case

filing as two distinct stages. Next, individuals can receive a jail or a prison sentence. I allow

for these two distinct outcomes to be two separate stages. Finally, the details available to me

regarding case disposition enable me to disambiguate between different intermediate outcomes.

Specifically I can separately identify defendants whose cases where diverted or deferred21, from

those who were formally charged. Diversion. Given these differences, it is worth rewriting the

order Heckman specification for this setting.

s∗i = X
′
iα1 + Z

′
s,iα2 + ξi

= Z
′
iα+ ξi ;

si =



0 if −∞ < s∗i ≤ µ1 [Arrest and Filing]

1 if µ1 < s∗i ≤ µ2 [Case Diverted/Deferred]

2 if µ2 < s∗i ≤ µ3 [Charging]

3 if µ3 < s∗i ≤ µ4 [Jail Sentencing]

4 if µ4 < s∗i <∞ [Prison Sentencing] ,

(7)

where Xi is a vector of variables available at the arrest stage – and thus available for all indi-

viduals in the data – and Zs,i is the exclusion restriction. This vector enters only the selection

equation and not the sentencing (or outcome) equation. The second component to the ordered

Heckman model is the sentencing equation:

yi =


X

′
iβ3 + εi,3 if si = 3

X
′
iβ4 + εi,4 if si = 4

missing otherwise ,

(8)

21The use of the option of diversion and deferment has increased over time. In the state court system in large
urban counties in the 1990s, the option was used in 4.1% of cases, whereas in the next decade it was used in 7.4%
of cases. Mueller-Smith and Schnepel (2020) study the consequences of diversion, documenting large, beneficial
impacts on the margins of both crime and the labor market for those who receive such outcomes.
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A.3 Testing the Exclusion Restrictions

I make two restrictions when testing the exclusion restrictions, both to fit the presentation of

the testing procedure developed in Huber and Mellace (2014). First, I collapse my multi-stage

(ordered probit) approach to specifying the selection equation into a binary (standard probit)

one – as I do in column 5 of both Tables 2 and 3. Next, the authors present the case for a binary

exclusion restriction. In both their empirical applications, the authors start with a non-binary

exclusion restriction (husbands income, number of children), and then binarize these. I follow

the authors, and binarize my instrument.

It is beyond the scope of this appendix section to cover the entire approach of Huber and

Mellace (2014) – I encourage the interested reader to consult the paper directly. In this section,

my aim is to explain what the results in Table A2 are telling us.

Although I focus on the exclusion restriction, the approach of Huber and Mellace (2014) is

in fact testing both the validity of the exclusion restriction and the additive separability of the

error term in the selection equation. The authors show that this second test can be represented

as a test of monotonicity of the selection state with respect to the exclusion restriction, where

monotonicity can be positive (as in my case) or negative.

The authors then work through a series of calculations to arrive at two bounding rules for

the specific sub-group of individuals who would make it to the sentencing stage irrespective

of what realization of the exclusion restriction, Zs,i, that they receive (the always-takers) –

one for probability measures of the outcome distribution, and another for the mean outcome.

These bounding rules give rise to the two sets of inequality constraints that form the basis

of the mean-based and probability-based tests, the p-values of which are presented in Table

A2. Finally, the standardized difference presented in the first row of this table represents the

magnitude of the maximum constraint violation for the mean-based test – the p-value in row

2 represents the precision of any such violation. As the authors note, a negative standardized

difference indicates that no constraint is violated.

Table A2: Testing the Exclusion Restrictions – Huber and Mellace (2014)

(1) (2) (3)

Federal New Orleans 75 Largest Urban
Counties

Standardized Difference –0.372 –0.288 –0.329

p-Value Mean-Based Constraints 1.000 1.000 1.000

p-Value Probability-Based Constraints 1.000 1.000 1.000

Notes: Results based on 10,000 simulation runs. The first row – Standardized Difference – refers to standardized
maximum of the mean constraints in Equation 12 of Huber and Mellace (2014), who note that a negative or zero value
implies that no constraint is violated. The next two rows are based on test of the mean-based (Equation 12 of Huber and
Mellace (2014)) and probability-based constraints (Equation 8 of Huber and Mellace (2014)) respectively.
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A.4 Differential Arrest by Race

This work considers the consequence of differential stadial progression by race, taking the arrest

stage as the starting point. This decision is entirely data-driven. A large body of work documents

racial bias in police behavior during in civilian interactions prior to and at arrest (Antonovics

and Knight, 2009; Pierson et al., 2020; Ba et al., 2021; Hoekstra and Sloan, 2022). If there

is racial bias in arrest risk, then the approach taken here will miss this important stage. Put

differently, my arrest sample will be a selected sample of those who commit a crime.

Hypothetically, if there were a data linkage from the suspicion of crime phase through to

arrest and then sentencing, then the framework presented here could easily accommodate this

extension, e.g., by specifying a pre-arrest phase – stage -1. In this setting, if Black individuals

suspected of a crime were more likely to be arrested than their white counterparts (αBlack > 0),

and if there are details of the suspected crime that will later impact sentencing and are observed

by police but not the econometrician (ρ > 0), then even the selection-corrected estimates of the

Black-white sentencing gap presented here will be an underestimate of the true sentencing gap,

one that incorporates racial disparities in the arrest decision.

In this section I create two sets of Black-white and Hispanic-white ratios – for the population

relevant to each courts system, and for arrestees. Columns 3 and 6 are the arrest ratio to pop-

ulation ratio. A ratio of ratios equal to one would indication equal, proportional representation

at arrest across racial and ethnic groups. A ratio of ratios above 1 signals over-representation

for the minority group in question, below 1 the converse.

Table A3 documents the ratios of Black:white and Hispanic:white arrestee ratios in both the

data employed here, and the relevant source populations of these arrestees. The latter is not

precisely what I want (which are the race and ethnic ratios of those suspected of committing

a crime), but is as close as I can get. What the statistics in this table show is that Black

and Hispanic individuals are over-represented in the pool of arrestees – the starting point for

my analysis – by a factor that ranges from 2 to over 5.5. Unless the sole reason for this vast

difference in representation at arrest is due to differences in committing crime across groups,

then this suggests my selection-corrected sentencing gap estimates are lower bounds of the true

racial and ethnic disparities in sentencing.
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Table A3: Comparing Population and Arrestee Race and Ethnicity Ratios

(1) (2) (3) (4) (5) (6)

Black:White Hispanic:White

Population
Ratio

Arrestee
Ratio

Arrestee
Ratio:

Population
Ratio

Population
Ratio

Arrestees
Ratio

Arrestee
Ratio:

Population
Ratio

Federal Courts .142 .608 4.30

New Orleans 2.40 5.90 2.46

Largest 75 Counties .290 1.63 5.62 .397 .844 2.13

Notes:The sources for the arrestee ratios are the three datasets I used in the paper – the FJSP data for the federal
system, the NODA data I use for the New Orleans state system and the SCPS data I use for the large urban counties
state courts system. To calculate adult male population ratios for the federal courts, I use data from the 2000 Census,
specifically 2000 Census Table 5 from https://www.census.gov/data/tables/2000/dec/phc-t-09.html. For New Orleans, I
use statistics for the New Orleans city population in 2000 from http://censusviewer.com/city/LA/New%20Orleans.
Finally, for the 75 largest urban counties, I select the 75 counties from the Census 2000 county-level data here –
https://www.census.gov/data/datasets/time-series/demo/popest/intercensal-2000-2010-counties.html.

A.5 Federal CJS Sensitivity Analyses

I probe the baseline federal results in several directions, in order to assess (i) the validity of the

(shift log transform) functional form assumption, (ii) the stability of the core, pre-Booker results

in the post-Booker period and (iii) whether it is the granularity of the arrest offense controls

that are driving the finding of no sample selection.

A.5.1 Functional Form

Table A4 presents the results for my baseline setting, but where the dependent variable in the

outcome equation is the inverse hyperbolic sine of sentence length instead of the shifted log

transform. This alternative transformation is becoming more popular in criminal justice papers,

for example, Feigenberg and Miller (2021), Norris et al. (2021)and Williams and Weatherburn

(2022).

Like the natural log, the IHS is a concave transformation, and thus deals with the extreme

(right) skewness of the sentencing data. The results presented below confirm what I find in the

main analysis (using a log specification), both qualitatively and quantitatively.

A.5.2 The Post-Booker Period

The Supreme Court decision in U.S. v. Booker and Fanfan – that the previously mandatory

federal sentencing guidelines should now hereafter be considered merely in an advisory capacity –

strongly suggests that I should consider the pre-Booker and post-Booker periods as two separate

regimes.

The reason I truncate the data at the end of the 2003 fiscal year is that during the 2004 fiscal

year, the Washington state supreme court decided on Blakely v. Washington, an antecedent to

U.S. v. Booker and Fanfan, which led to certain judges deciding they could not apply the

sentencing guidelines, either fully or partially, on constitutional grounds. Some did so on a case-

by-case basis, whilst others followed the local norm established with their district. This was the
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Table A4: Functional Form Sensitivity Analysis – Federal CJS

(1) (2) (3) (4) (5)

OLS OLS Ordered
Probit

Ordered
Heckman

Heckman

Sentencing Equation

Black .908*** .379*** .379*** .379***
(.0501) (.0242) (.0241) (.0241)

Selection Equation

Black .0116 .0116 .00941
(.0114) (.0114) (.0107)

Full Set of Controls X X X X

sentenceW 46.4 46.4 46.4 46.4

ρ .0161 .00899
(.0258) (.0238)

p-value: ρ = 0 .53 .71
p-value: Exclusion Restriction(s) .000 .000 .000
R2 .0557 .406
Observations 186,436 186,436 388,123 388,123 388,123

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The dependant variable in the sentencing equation is the
inverse hyperbolic sine of sentence length in months. In the selection equation, the dependant variable is stage, which
takes values 0, 1, 2 or 3. Th exception is in specification 6, where I binarize the stage variable (stages 0-2 = 0, stage 3=1).
All specifications, with the exception of specification 1, include the following control variables: district dummies, year of
arrest dummies, arrest offence code dummies, age decile dummies, marital status dummies and state/country of birth
dummies. The exclusion restrictions for the ordered probit selection model are leave-out district×year means of the
proportion of individuals who are last seen in stage 0, stage 1 and stage 3. For the probit selection model, the exclusion
restriction is the leave-out district×year mean of the proportion of individuals who are last seen in stage 3. Standard
errors are clustered at district level.

case even though these were federal judges hearing federal cases, and Blakely was a state case.

For this reason, I omit the fiscal years of 2004 and 2005 from analysis, and instead focus on the

two homogeneous periods of i.) Pre-Blakely – 1994-2003 and ii.) Post-Booker – 2006 onward.

In this section I replicate my main analysis (which focused on the pre-Blakeley period of 1994-

2003), and consider the post-Booker period of 2006-2010. Table A5 repeats my core analysis,

but for the post-Booker years. Table A6 probes the sensitivity of these findings to the functional

form specification, using the inverse hyperbolic sine in place of the log specification. The two

points to take from these two tables are i.) the post-Booker results are qualitatively identical

to what I find in my core analysis and ii.) the results are not sensitive to the functional form

specification.
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Table A5: Black-White Sentencing Disparities in the Federal CJS – 2006-2010

(1) (2) (3) (4) (5)

OLS OLS Ordered
Probit

Ordered
Heckman

Heckman

Sentencing Equation

Black .703*** .376*** .376*** .376***
(.0504) (.0208) (.0208) (.0208)

Selection Equation

Black .014 .014 .00647
(.0182) (.0182) (.0157)

Full Set of Controls X X X X

ρ .00456 -.00361
p-value: ρ = 0 .76 .83
p-value: Exclusion Restriction(s) .000 .000 .000
R2 .048 .372
Observations 85,311 85,311 215,722 215,722 215,722

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The dependant variable in the sentencing equation is the
log(sentence length in months +1). The +1 is to allow for zero sentence lengths (fines, probation) in the sentencing stage.
In the selection equation, the dependant variable is stage, which takes values 0, 1, 2 or 3. Th exception is in specification
6, where we binarize the stage variable (stages 0-2 = 0, stage 3=1). All specifications, with the exception of specification
1, include the following control variables: district dummies, year of arrest dummies, arrest offence code dummies, age
decile dummies, marital status dummies and state/country of birth dummies. The exclusion restrictions for the ordered
probit selection model are leave-out district×year means of the proportion of individuals who are last seen in stage 0,
stage 1 and stage 3. For the probit selection model, the exclusion restriction is the leave-out district×year mean of the
proportion of individuals who are last seen in stage 3. Standard errors are clustered at district level.

Table A6: Functional Form Sensitivity Analysis – Federal CJS – 2006-2010

(1) (2) (3) (4) (5)

OLS OLS Ordered
Probit

Ordered
Heckman

Heckman

Sentencing Equation

Black .767*** .412*** .412*** .412***
(.0529) (.0233) (.0232) (.0233)

Selection Equation

Black .014 .014 .00647
(.0182) (.0182) (.0157)

Full Set of Controls X X X X

ρ .00333 -.00436
p-value: ρ = 0 .81 .77
p-value: Exclusion Restriction(s) .000 .000 .000
R2 .0454 .361
Observations 85,311 85,311 215,722 215,722 215,722

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The dependant variable in the sentencing equation is the
inverse hyperbolic sine of sentence length in months. In the selection equation, the dependant variable is stage, which
takes values 0, 1, 2 or 3. Th exception is in specification 6, where we binarize the stage variable (stages 0-2 = 0, stage
3=1). All specifications, with the exception of specification 1, include the following control variables: district dummies,
year of arrest dummies, arrest offence code dummies, age decile dummies, marital status dummies and state/country of
birth dummies. The exclusion restrictions for the ordered probit selection model are leave-out district×year means of the
proportion of individuals who are last seen in stage 0, stage 1 and stage 3. For the probit selection model, the exclusion
restriction is the leave-out district×year mean of the proportion of individuals who are last seen in stage 3. Standard
errors are clustered at district level.
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A.5.3 Is the Granular Detail of the Control Variables Driving the Federal Results?

Table A7 presents results for three different levels of arrest offense controls. The “coarse”

controls account for 8 main arrest categories, the “medium” controls account for 55 arrest sub-

categories and the “fine” controls – also my baseline controls – account for 312 distinct arrest

offenses. Unsurprisingly the Black-white sentencing gap differs across the specifications, but the

key message from this set of results is that the granularity of my baseline controls is not driving

the sample selection parameter estimates. Even with very coarse offense controls, I still find no

evidence of a sample selection problem, no differential stadial progression by race, and thus no

difference between the OLS and ordered Heckman estimates of the Black-white sentencing gap.

Table A7: Black-White Sentencing Disparities in the Federal CJS

(1) (2) (3) (4) (5) (6)
OLS Ordered Heckman

Sentencing Equation

Black .454*** .361*** .349*** .454*** .361*** .349***
(.0307) (.0225) (.0214) (.0306) (.0225) (.0214)

Selection Equation

Black .016 .0105 .0116
(.0171) (.0123) (.0114)

Offense Control Type Coarse Medium Fine Coarse Medium Fine

ρ .0253 .0201 .0185
(.0309) (.0291) (.0284)

p-value: ρ = 0 .41 .49 .52
yvarWhite 46.4 46.4 46.4 46.4 46.4 46.4
expBetaBlack .575 .435 .418 .575 .435 .418
p-value: Exclusion Restriction(s) .000 .000 .000
R2 .359 .406 .419
Observations 186,436 186,436 186,436 388,123 388,123 388,123

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The dependant variable in the sentencing equation is the
log(sentence length in months +1). The +1 is to allow for zero sentence lengths (fines, probation) in the sentencing stage.
In the selection equation, the dependant variable is stage, which takes values 0, 1, 2 or 3. Th exception is in specification
6, where I binarize the stage variable (stages 0-2 = 0, stage 3=1). All specifications include the following control variables:
district dummies, year of arrest dummies, age decile dummies, marital status dummies and state/country of birth
dummies. The coarse controls are a series of dummies for the 8 main offense categories. The medium controls are a series
of dummies for the 55 sub-offense categories. The fine controls are the baseline offense controls – a series of dummies for
the 312 arrest offenses. The exclusion restrictions for the ordered probit selection model are leave-out district×year means
of the proportion of individuals who are last seen in stage 0, stage 1 and stage 3. Standard errors are clustered at district
level.
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A.6 State CJS Sensitivity Analyses

Here I present the results for the two state CJS settings I consider in this work, using the

inverse hyperbolic sine (IHS) transformation of sentence length instead of shifted log transform.

In both cases, the core patterns documented in the main text are replicated using this alternative

approach to deal with the extreme (right) skewness of the sentencing data.

Table A8: Functional Form Sensitivity Analysis – New Orleans State CJS

(1) (2) (3) (4) (5)

OLS OLS Ordered
Probit

Ordered
Heckman

Heckman

Sentencing Equation

Black .547*** .255*** .284*** .291***
(.0223) (.0174) (.0177) (.0177)

Selection Equation

Black .133*** .133*** .188***
(.0126) (.0126) (.0134)

Full Set of Controls X X X X

sentenceW 25.7 25.7 25.7 25.7

ρ .325 .278
(.0181) (.0181)

p-value: ρ = 0 .000 .000
p-value: Exclusion Restriction .000 .000 .000
R2 .0135 .511
Observations 49,792 49,792 149,970 149,970 149,970

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The dependant variable in the sentencing equation is the
inverse hyperbolic since of sentence length in months. In the selection equation, the dependant variable is stage, which
takes values 0, 1, 2 or 3. Th exception is in specification 6, where we binarize the stage variable (stages 0-2 = 0, stage
3=1). All specifications, with the exception of specification 1, include the following control variables: arresting agency
dummies, lead arrest charge dummies, arrest year dummies, age decile dummies, a dummy for multiple arrest charges, and
a criminal history dummy. The exclusion restrictions for both the ordered probit, and probit, selection models are the
leave-out screening prosecutor mean interacted with a non-missing dummy, and a dummy for missing information on
screening prosecutor. Standard errors are clustered at individual level.
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Table A9: Functional Form Sensitivity Analysis – State Courts in Large Urban Counties

(1) (2) (3) (4) (5)

OLS Ordered Ordered
Probit Heckman

Jail Prison Jail Prison

Sentencing Equation

Black .145*** .0977*** .145*** .0964***
(.0195) (.0295) (.0192) (.03)

Hispanic .202*** .148*** .2*** .165***
(.0356) (.036) (.0387) (.0382)

Selection Equation

Black -.00147 -.00147 -.00147
(.0181) (.018) (.018)

Hispanic .0419*** .0413*** .0413***
(.0135) (.0135) (.0135)

sentenceW 3.28 53.7 3.28 53.7

ρ3 -.062 -.062
(.162) (.162)

ρ4 .379 .379
(.143) (.143)

p-value: ρ3 = ρ4 = 0 .052 .052
p-value: Exclusion Restrictions .000 .000 .000

p-value: βBlack = βHispanic .144 .09 .192 .025
p-value: αBlack = αHispanic .021 .023 .023

R2 .22 .332
Observations 38,939 24,945 96,057 96,057 96,057

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. Standard errors are clustered at county level. The
dependant variable in the sentencing equation is the inverse hyperbolic sine of sentence length in months. In the selection
equation, the dependant variable is stage, which takes values 0, 1, 2, 3 or 4. All specifications include the following control
variables: county dummies, year of arrest dummies, most serious arrest offence code dummies, second most serious arrest
offence code dummies, dummies for categories of the count of arrest charges, age decile dummies, dummies for most
serious prior arrest, prior failure to appear in court, most serious prior conviction and a dummy for prior adult felony
conviction for a violent offense. The exclusion restrictions for the ordered probit selection model are leave-out
county×year means of the proportion of individuals who are last seen in stage 1 and stage 2. Given the 2-stage stratified
sample design, SCPS-supplied weights are used in all analysis, thus yielding estimates for the 75 most populous counties
in the month of May.
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A.7 Monte Carlo Simulations I – The Selection-Corrected Sentencing Gap

In this section I run a series of simulations22 in order to highlight the joint importance of (i)

differential racial progression through the CJS stages and (ii) the sign and size of sample selection

in the CJS, in leading to a divergence in the estimated Black-white sentencing gap using OLS

and an ordered Heckman approach.

The simulated sample size is 2,000 – 1,000 white arrestees and 1,000 Black arrestees. I simulate

Severity – a measure of offense severity – and Z – the exclusion restriction for the ordered

probit, to be independent standard normal variables. The errors ξ and ε are created as standard

bivariate normal variables with correlation ρ.

The DGP for the selection equation is given by:

s∗i = α1Blacki + α2Severityi + α3Zi + ξi (9)

In order to keep the same proportion of arrestees that progress to each stage constant across the

different parameter specifications, I use percentiles of s∗i to determine the cutoffs that give rise

to realizations of si values. I choose the proportions 0.4, 0.1, 0.1 and 0.4 for stages 0,1,2 and 3

respectively, meaning that 40% of arrestees will progress to the sentencing stage. This choice is

made to align the simulation results with those of the actual data that I use in the body of the

paper.

si =



0 if −∞ < s∗i ≤ s∗40

1 if s∗40 < s∗i ≤ s∗50

2 if s∗50 < s∗i ≤ s∗60

3 if s∗60 < s∗i <∞

(10)

Finally I specify the DGP for the sentencing equations as:

yi =

β0 + β1Blacki + β2Severityi + εi if si = 3

missing otherwise.
(11)

I set the baseline parameters as follows:

Selection (s∗i ): α2 = α3 = 1.

Outcome (yi): β0 = ln(40), β1 = .1, β2 = 1.

In the simulations below I only ever change two parameters. These parameters are ρ, which

determines the extent to which sample selection is present, and α1, which governs the differential

progression on Black arrestees through the CJS stages. A higher α1 value means that a higher

fraction of Black individuals will progress to the final, sentencing stage.

The simulation results confirm that it is necessary to have both differential racial progression

through the CJS stages (α1 6= 0) and for the sentencing stage to represent a selected sample

of arrestees (ρ 6= 0), in order for the OLS and ordered Heckman estimates of the Black-white

sentencing gap to diverge. In Case 1, where there is both positive selection and differential

22I used the simulation section of Chiburis and Lokshin (2007) as a basis for this section.
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racial progression through the CJS stages, I show a large and significant negative bias of the

OLS estimate of the Black-white sentencing gap.

When I specify there to be no differential racial progression, but I keep the sample selection

parameter fixed (ρ = .5) – as I do in Case 4 – there is no difference between the OLS and ordered

Heckman estimates.

Likewise, when I shut down sample selection (i.e. set ρ = 0), then even with differential racial

progression, the OLS and ordered Heckman estimates coincide (Case 13 is the best example of

this, Cases 14 and 15 are useful too.).

These intermediate cases make the final case somewhat moot. Here I shut down both dif-

ferential racial progression and sample selection. Nevertheless, I present it for completeness.

Unsurprisingly, there is no difference between the two estimates for this final case.
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Table A10: Monte Carlo Simulations – Comparing OLS and Ordered Heckman Estimates

(1) (2) (3) (4) (5) (6) (7)

Parameter Choices OLS Ordered Heckman OLS Bias

ρ α1 β̂1 95%
Coverage
Probabil-

ity

β̂1 95%
Coverage
Probabil-

ity

β̂OLS
1 −
β̂OH

1

1.) .50 .50 .0261 .812 .0998 .950 -.0737
(.0686) (.0693) (.0204)

2.) .50 .20 .0709 .929 .1005 .948 -.0295
(.0679) (.0678) (.0171)

3.) .50 .10 .0856 .943 .1000 .946 -.0145
(.0683) (.0682) (.0166)

4.) .50 0 .1005 .951 .1002 .951 .0003
(.0675) (.0672) (.0163)

5.) .25 .50 .0634 .918 .1003 .950 -.0370
(.0709) (.0720) (.0156)

6.) .25 .20 .0855 .943 .1003 .948 -.0148
(.0700) (.0701) (.0100)

7.) .25 .10 .0929 .952 .1003 .951 -.0075
(.0694) (.0695) (.0089)

8.) .25 0 .1010 .947 .1008 .947 .0001
(.0705) (.0705) (.0084)

9.) .10 .50 .0856 .945 .1002 .950 -.0146
(.0710) (.0722) (.0140)

10.) .10 .20 .0944 .945 .1003 .945 -.0059
(.0707) (.0709) (.0069)

11.) .10 .10 .0973 .950 .1002 .951 -.0030
(.0706) (.0708) (.0050)

12.) .10 0 .0999 .950 .0998 .951 .0000
(.0706) (.0707) (.0044)

13.) 0 .50 .0998 .948 .0999 .949 -.0001
(.0717) (.0730) (.0135)

14.) 0 .20 .1004 .950 .1004 .949 .0000
(.0707) (.0710) (.0062)

15.) 0 .10 .1004 .950 .1004 .949 .0000
(.0706) (.0707) (.0038)

16.) 0 0 .1009 .950 .1009 .950 -.0000
(.0703) (.0704) (.0029)

Notes: Results based on 10,000 simulation runs. The target parameter – β1 – is .1 for all simulations. Columns 3 and 5
show the mean and bootrapped standard error of β̂1 from the 10,000 simulation runs for an OLS and ordered Heckman
regression respecitvely. Columns 4 and 6 show the coverage probabilities of the 95% confidence intervals for the OLS and
ordered Heckman regressions resepectively – the proportion of simulation runs for which the 95% confidence interval of β̂1
included the true parameter value, β1 = .1. Column 7 shows the mean and bootstrapped standard error of the difference
between the OLS and ordered Heckman estimates of β1.
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A.8 Monte Carlo Simulations II – Sample Selection and the Imputation

Method

The purpose of this section is to provide greater detail on the simulation exercise presented in

Table 5 and discussed in Section 5. The simulated sample size is 2,000 – 1,000 white arrestees

and 1,000 Black arrestees. I simulate Severity – a measure of offense severity – and Z – the

exclusion restriction for the ordered probit, to be independent standard normal variables. The

errors ξ and ε are created as standard bivariate normal variables with correlation ρ.

The DGP for the selection equation is given by:

s∗i = α1Blacki + α2Severityi + α3Zi + ξi (12)

In order to keep the same proportion of arrestees that progress to each stage constant across

the different parameter specifications, I use percentiles of s∗i to determine the cutoffs that give

rise to realizations of si values. I choose the proportions 0.20, 0.05, 0.05 and 0.70 for stages 0, 1,

2 and 3 respectively, meaning that 70% of arrestees will progress to the sentencing stage. This

choice is made to ensure that the imputed sentence length mass point of those who do not reach

the sentencing stage is sufficiently far away from the median.

si =



0 if −∞ < s∗i ≤ s∗20

1 if s∗20 < s∗i ≤ s∗25

2 if s∗25 < s∗i ≤ s∗30

3 if s∗30 < s∗i <∞

(13)

Finally I specify the DGP for the sentencing equations as:

yi =

β0 + β1Blacki + β2Severityi + εi if si = 3

missing otherwise.
(14)

The two parameters I vary across simulation specifications are ρ and α1 – the parameters that

respectively govern the sample selection problem and differential stadial progression by race.

The other parameters remain fixed across all simulation specifications, are as follows:

Selection (s∗i ): α2 = α3 = 1. This means that there is differential stadial progression

Outcome (yi): β0 = ln(40), β1 = .1, β2 = 1.

Table A11 below is an extended version of Table 5, presenting results for a wider range of

quantile regression specifications.
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Table A11: Monte Carlo Simulations – The Imputation Method for Sample Selection Problems

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Parameter Quantile Regression + Imputation Method
Choices

ρ α1 β̂OLS
1 β̂40

1 β̂50
1 β̂60

1 β̂70
1 β̂80

1 β̂90
1 β̂OH

1

1.) 1 .50 -.002 .333 .267 .212 .170 .141 .120
(.048) (.097) (.083) (.074) (.070) (.071) (.080)

2.) 1 .20 .059 .178 .160 .141 .126 .116 .108
(.048) (.091) (.080) (.073) (.069) (.070) (.080)

3.) 1 .10 .079 .128 .124 .118 .111 .108 .104
(.048) (.089) (.080) (.072) (.069) (.070) (.080)

4.) 1 0 .100 .077 .089 .095 .097 .100 .101
(.048) (.089) (.079) (.073) (.069) (.070) (.080)

5.) .50 .50 .049 .450 .365 .293 .238 .196 .161 .100
(.053) (.117) (.097) (.083) (.077) (.077) (.085) (.054)

6.) .50 .20 .079 .227 .200 .174 .154 .138 .124 .099
(.053) (.107) (.093) (.082) (.077) (.077) (.085) (.053)

7.) .50 .10 .090 .154 .146 .136 .126 .119 .112 .100
(.052) (.106) (.092) (.081) (.076) (.076) (.085) (.052)

8.) .50 0 .100 .079 .091 .096 .097 .100 .100 .100
(.052) (.104) (.091) (.081) (.076) (.076) (.084) (.053)

9.) .25 .50 .074 .489 .398 .324 .267 .224 .186 .100
(.053) (.124) (.101) (.086) (.078) (.077) (.086) (.054)

10.) .25 .20 .089 .244 .214 .187 .166 .149 .134 .099
(.053) (.112) (.095) (.083) (.078) (.078) (.087) (.054)

11.) .25 .10 .095 .162 .153 .142 .132 .124 .117 .100
(.054) (.110) (.094) (.084) (.078) (.078) (.086) (.054)

12.) .25 0 .100 .080 .091 .096 .099 .100 .100 .100
(.053) (.110) (.094) (.084) (.078) (.077) (.086) (.053)

13.) 0 .50 .100 .519 .426 .350 .294 .250 .212 .100
(.054) (.126) (.102) (.087) (.080) (.079) (.087) (.055)

14.) 0 .20 .100 .255 .225 .197 .177 .160 .146 .100
(.054) (.115) (.096) (.084) (.078) (.077) (.087) (.054)

15.) 0 .10 .100 .169 .159 .146 .138 .130 .122 .100
(.054) (.112) (.095) (.085) (.079) (.078) (.086) (.054)

16.) 0 0 .100 .081 .092 .095 .099 .100 .100 .100
(.054) (.113) (.096) (.085) (.079) (.078) (.087) (.054)

Notes: Results based on 10,000 simulation runs. The target parameter – β1 – is .1 for all simulations. The other fixed
parameters are: α2 = α3 = β2 = 1 and β0 = ln(40). Column 3 shows the mean and bootrapped standard error of β̂1 from
an OLS regression based on the sentencing stage alone. Columns 4-9 present the mean and bootrapped standard error of
β̂1 from quantile regressions for the 40th-90th percentiles in decile increments based on an imputation approach whereby
all missing sentences are allocated the lowest value of sentence length in each iteration run. Finally, column 10 shows the
mean and bootrapped standard error of β̂1 from an ordered Heckman regression.
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B Data Appendix

In both the federal and state datasets, I link across multiple stages of the criminal justice system.

In this Appendix section I briefly outline the respective processes.

B.1 Federal Justice Statistics Program (FJSP) Data Linkage

The report by Kelly (2012) was invaluable in conducting the merges across the four federal agency

files used for the analysis. These agency files are part of the Federal Justice Statistics Program

(FJSP), and are made available as individual Standard Analysis Files (SAF) – standardized files

at the individual-case level.

The four sets of agency datasets/SAFs comprise i.) data from the U.S. Marshals Service

(USMS) that covers arrests, ii.) data from the Executive Office for United States Attorneys

(EOUSA) that covers, amongst other things, case filing, iii.) data from the Administrative

Office of the United States Courts (AOUSC) covering charging and iv.) data from the United

States Sentencing Commission (USSC) that covers sentencing.

It is possible to link files inter-agency (e.g., USMS In to EOUSA Matters Out), as well as

intra-agency (EOUSA Matters Out to EOUSA Cases Out). All linkage files are dyadic, which

means in order to link the USMS arrest data to USSC sentencing outcomes, I need to go via

the EOUSA and AOUSC agency files.

I refer the reader interested in learning more about the data linkages, and the lengths taken

to validate the linking process, to the work of Kelly (2012).

In constructing my main stage variable (si in Equation 1), I use information from each of

the four agency files, as well as from the linking files. If an individual is seen only in the USMS

data (USMS IN), but either a.) not in the EOUSA data (EOUSA Matters Out) or b.) has been

removed by the data providers from the EOUSA based on a screening algorithm (in this case if

the individual has an arrest code that relates to material witnesses and supervision violations)

then I allocate the individual a value of si = 0. For those seen in the USMS and EOUSA data,

but are not present in the AOUSC data (AOUSC Cases Out), the ascribe si = 1. For those last

seen in the AOUSC data (i.e., are not linked to the USSC data(USSC Out)) I code si = 2. For

those linked across all stages, I code si = 3.23,24

B.2 New Orleans District Attorney’s Office (NODA) Data Linkage

The data linkage for the New Orleans state data is considerably more straightforward. There

are multiple datasets, including separate files for arrest outcomes, charging details, assistant DA

characteristics, judge characteristics, defendant characteristics, and sentencing outcomes. The

data are at different levels e.g. charging data is at the defendant-offense-charge level, whereas

the assistant DA data is at the attorney level. A series of unique identifiers enables the linkage

across both datasets and levels.
23The data provider applies another screening algorithm at this linkage, removing any individuals who were

not convicted of a charge who appear in the USSC data.
24For the extension in Section 4.1.1, I split those with si = 3 into si = 3 for those who are sentenced without

a statutory minimum charge, and si = 4 for those who face a statutory minimum sentence charge.
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B.3 State Court Processing Statistics (SCPS) Data Linkage

The SCPS data that I use for analysis in this paper was obtained from the ICPSR25 pre-linked.

25See this link – https://www.icpsr.umich.edu/web/ICPSR/studies/2038 – for more information on the data.
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